http://iet.metastore.ingenta.com
1887

Regularity of spectral residual for reduced reference image quality assessment

Regularity of spectral residual for reduced reference image quality assessment

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Inspired by the facts that visual saliency captures more attention and spectral residual (SR) can indicate the saliency of the image, a novel reduced-reference image quality assessment metric is proposed based on the regularity of the SR. The orientation and frequency components of an image are first extracted in wavelet domain. Then SR is obtained to represent the saliency of the component. Next fractal dimension is adopted to encode SR and concatenated as the image features. Finally, the feature differences between reference image and distorted one are pooled as the quality score. The proposed metric is evaluated on four largest image databases (TID2013, TID2008, CSIQ, and LIVE databases), and experimental results confirm that the proposed metric has a good performance.

References

    1. 1)
      • Z. Wang , G. Wu , H.R. Sheikh .
        1. Wang, Z., Wu, G., Sheikh, H.R., et al: ‘Quality-aware images’, IEEE Trans. Image Process., 2006, 15, (6), pp. 16801689.
        . IEEE Trans. Image Process. , 6 , 1680 - 1689
    2. 2)
      • Q. Li , Z. Wang .
        2. Li, Q., Wang, Z.: ‘Reduced-reference image quality assessment using divisive normalization-based image representation’, IEEE J. Sel. Top. Signal Process., 2009, 3, (2), pp. 202211.
        . IEEE J. Sel. Top. Signal Process. , 2 , 202 - 211
    3. 3)
      • L. Ma , S.N. Li , F. Zhang .
        3. Ma, L., Li, S.N., Zhang, F., et al: ‘Reduced-reference image quality assessment using reorganized DCT-based image representation’, IEEE Trans. Multimed., 2011, 13, (4), pp. 824829.
        . IEEE Trans. Multimed. , 4 , 824 - 829
    4. 4)
      • A. Rehman , Z. Wang .
        4. Rehman, A., Wang, Z.: ‘Reduced-reference image quality assessment by structural similarity estimation’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33783389.
        . IEEE Trans. Image Process. , 8 , 3378 - 3389
    5. 5)
      • X. Gao , W. Lu , D. Tao .
        5. Gao, X., Lu, W., Tao, D., et al: ‘Image quality assessment based on multiscale geometric analysis’, IEEE Trans. Image Process., 2009, 18, (7), pp. 14091423.
        . IEEE Trans. Image Process. , 7 , 1409 - 1423
    6. 6)
      • R. Soundararajan , A.C. Bovik .
        6. Soundararajan, R., Bovik, A.C.: ‘RRED indices: reduced reference entropic differencing for image quality assessment’, IEEE Trans. Image Process., 2012, 21, (2), pp. 517526.
        . IEEE Trans. Image Process. , 2 , 517 - 526
    7. 7)
      • A. Shnayderman , A. Gusev , A. Eskiciogl .
        7. Shnayderman, A., Gusev, A., Eskiciogl, A.: ‘An SVD-based gray-scale image quality measure for local and global assessment’, IEEE Trans. Image Process., 2006, 15, (2), pp. 422429.
        . IEEE Trans. Image Process. , 2 , 422 - 429
    8. 8)
      • D. Liu , Y. Xu , Y. Quan .
        8. Liu, D., Xu, Y., Quan, Y., et al: ‘Reduced reference image quality assessment using regularity of phase congruency’, Signal Process., Image Commun., 2014, 29, (8), pp. 844855.
        . Signal Process., Image Commun. , 8 , 844 - 855
    9. 9)
      • Y. Xu , D. Liu , Y. Quan .
        9. Xu, Y., Liu, D., Quan, Y., et al: ‘Fractal analysis for reduced reference image quality assessment’, IEEE Trans. Image Process., 2015, 24, (7), pp. 20982109.
        . IEEE Trans. Image Process. , 7 , 2098 - 2109
    10. 10)
      • D. Liu , Y. Xu , Y. Quan .
        10. Liu, D., Xu, Y., Quan, Y., et al: ‘Directional regularity for visual quality estimation’, Signal Process., 2015, 110, pp. 211221.
        . Signal Process. , 211 - 221
    11. 11)
      • A.P. Pentland .
        11. Pentland, A.P.: ‘Fractal-based description of natural scenes’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6, (6), pp. 661674.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 661 - 674
    12. 12)
      • X. Hou , L. Zhang .
        12. Hou, X., Zhang, L.: ‘Saliency detection: a spectral residual approach’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007, pp. 18.
        . Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition , 1 - 8
    13. 13)
      • L. Zhang , L. Zhang , X.Q. Mo .
        13. Zhang, L., Zhang, L., Mo, X.Q., et al: ‘FSIM: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
        . IEEE Trans. Image Process. , 8 , 2378 - 2386
    14. 14)
      • A. Liu , W. Lin , M. Narwaria .
        14. Liu, A., Lin, W., Narwaria, M.: ‘Image quality assessment based on gradient similarity’, IEEE Trans. Image Process., 2012, 21, (4), pp. 15001512.
        . IEEE Trans. Image Process. , 4 , 1500 - 1512
    15. 15)
      • N. Ponomarenko , O. Ieremeiev , V. Lukin .
        15. Ponomarenko, N., Ieremeiev, O., Lukin, V., et al: ‘Color image database TID2013: peculiar-ties and preliminary results’. 4th European Workshop on Visual Information Processing, 2013.
        . 4th European Workshop on Visual Information Processing
    16. 16)
      • N. Ponomarenko , V. Lukin , A. Zelensky .
        16. Ponomarenko, N., Lukin, V., Zelensky, A., et al: ‘TID2008 – a database for evaluation of full-reference visual quality assessment metrics’, Adv. Mod. Radioelectron., 2009, 10, (10), pp. 3045.
        . Adv. Mod. Radioelectron. , 10 , 30 - 45
    17. 17)
      • E.C. Larson , D.M. Chandler .
        17. Larson, E.C., Chandler, D.M.: ‘Categorical image quality (CSIQ) database’. Available at http://vision.okstate.edu/csiq, accessed 27 July 2016.
        .
    18. 18)
      • H.R. Sheikh , K. Seshadrinathan , A.K. Moorthy .
        18. Sheikh, H.R., Seshadrinathan, K., Moorthy, A.K., et al: ‘Image and video quality assessment research at LIVE’. Available at http://live.ece.utexas.edu/research/quality, accessed 27 July 2016.
        .
    19. 19)
      • H.R. Sheikh , M.F. Sabir , A.C. Bovik .
        19. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (11), pp. 34403451.
        . IEEE Trans. Image Process. , 11 , 3440 - 3451
    20. 20)
      • Z. Wang , A.C. Bovik , H.R. Sheikh .
        20. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
        . IEEE Trans. Image Process. , 4 , 600 - 612
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0593
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0593
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address