access icon free Image denoising using generalised Cauchy filter

In many image processing analysis, it is important to significantly reduce the noise level. This study aims at introducing an efficient method for this purpose based on generalised Cauchy (GC) distribution. Therefore, some characteristics of GC distribution is considered. In particular, the characteristic function of a GC distribution is derived by using the theory of positive definite densities and utilising the density of a GC random variable as the characteristic function of a convolution of two generalised non-symmetric Linnik variables. Further, GC distribution is considered as a filter and in the proposed method for image noise reduction the optimal parameters of GC filter is defined by using the particle swarm optimisation. The proposed method is applied to different types of noisy images and the obtained results are compared with four state-of-the-art denoising algorithms. Experimental results confirm that their method could significantly reduce the noise effect.

Inspec keywords: image filtering; particle swarm optimisation; image denoising

Other keywords: image denoising; generalised nonsymmetric Linnik variables; image processing analysis; particle swarm optimisation; image noise reduction; generalised Cauchy filter; GC distribution

Subjects: Optimisation techniques; Optimisation techniques; Computer vision and image processing techniques; Optical, image and video signal processing; Filtering methods in signal processing

References

    1. 1)
      • 12. Ojo, O.A., Kwaaitaal-Spassova, T.G.: ‘An algorithm for integrated noise reduction and sharpness enhancement’, IEEE Trans. Consum. Electron., 2000, 46, (3), pp. 474480.
    2. 2)
      • 34. Miller, J., Thomas, J.: ‘Detectors for discrete-time signals in non-Gaussian noise’, IEEE Trans. Inf. Theory, 1972, 18, (2), pp. 241250.
    3. 3)
      • 37. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Int. Conf. Neural Networks, 1995, pp. 19421948.
    4. 4)
      • 33. Easley, G.R., Labate, D.: ‘Multiscale analysis for multivariate data’ (Birkhäuser Boston, 2012).
    5. 5)
      • 21. Anderson, D.N., Arnold, B.C.: ‘Linnik distributions and processes’, J. Appl. Probab., 1993, 30, (2), pp. 330340.
    6. 6)
      • 35. Liu, X., Tanaka, M., Okutomi, M.: ‘Single-image noise level estimation for blind denoising’, IEEE Trans. Image Process., 2013, 22, (12), pp. 52265237.
    7. 7)
      • 42. Goodenough, D.G., Han, T.: ‘Reducing noise in hyperspectral data – a nonlinear data series analysis approach’. IEEE WHISPERS'09. First Workshop on Hyperspectral Image Signal Processing, Grenoble, France, 2009, pp. 14.
    8. 8)
      • 20. Linnik, Y.V.: ‘Linear forms and statistical criteria, i, ii’, Selected Trans. Math. Stat. Probab., 1953, 3, pp. 4190.
    9. 9)
      • 7. Buades, A., Coll, B., Morel, J.-M.: ‘A review of image denoising algorithms, with a new one’, Multiscale Model. Simul., 2005, 4, (2), pp. 490530.
    10. 10)
      • 13. Rieder, P., Scheffler, G.: ‘New concepts on denoising and sharpening of video signals’, IEEE Trans. Consum. Electron, 2001, 47, (3), pp. 666671.
    11. 11)
      • 43. Makitalo, M., Foi, A.: ‘Noise parameter mismatch in variance stabilization, with an application to Poisson-Gaussian noise estimation’, IEEE Trans. Image Process., 2014, 12, (23), pp. 53485359.
    12. 12)
      • 5. Luisier, F., Blu, T., Unser, M., et al: ‘A new sure approach to image denoising: interscale orthonormal wavelet thresholding’, IEEE Trans. Image Process., 2007, 16, (3), pp. 593606.
    13. 13)
      • 39. Zhan, Z.-H., Zhang, J., Li, Y., et al: ‘Adaptive particle swarm optimization’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2009, 39, (6), pp. 13621381.
    14. 14)
      • 25. Baringhaus, L., Grübel, R.: ‘On a class of characterization problems for random convex combinations’, Ann. Inst. Stat. Math., 1997, 49, (3), pp. 555567.
    15. 15)
      • 16. Burian, A., Kuosmanen, P.: ‘Tuning the smoothness of the recursive median filter’, IEEE Trans. Signal Process., 2002, 50, (7), pp. 16311639.
    16. 16)
      • 36. Ou, C., Lin, W.: ‘Comparison between PSO and GA for parameters optimization of PID controller’. Int. Conf. Mechatronics and Automation, 2006.
    17. 17)
      • 15. Núñez, R.C., Gonzalez, J.G., Arce, G.R., et al: ‘Fast and accurate computation of the myriad filter via branch-and-bound search’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 33403346.
    18. 18)
      • 27. Rossberg, H.J.: ‘Positive definite probability densities’, Theory Probab Appl., 1991, 35, (1), pp. 169174.
    19. 19)
      • 28. Kalluri, S., Arce, G.R.: ‘Robust frequency-selective filtering using weighted myriad filters admitting real-valued weights’, IEEE Trans. Signal Process., 2001, 49, (11), pp. 27212733.
    20. 20)
      • 32. Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 106128.
    21. 21)
      • 40. Jansen, P.W., Perez, R.E.: ‘Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach’, Comput. Struct, 2011, 89, (13), pp. 13521366.
    22. 22)
      • 14. Gonzalez, J.G., Arce, G.R.: ‘Optimality of the myriad filter in practical impulsive-noise environments’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 438441.
    23. 23)
      • 4. Sendur, L., Selesnick, I.W.: ‘Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency’, IEEE Trans. Signal Process., 2002, 50, (11), pp. 27442756.
    24. 24)
      • 1. Chatterjee, P., Milanfar, P.: ‘Patch-based near-optimal image denoising’, IEEE Trans. Image Process., 2012, 21, (4), pp. 16351649.
    25. 25)
      • 3. Pizurica, A., Philips, W.: ‘Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising’, IEEE Trans. Image Process., 2006, 15, (3), pp. 654665.
    26. 26)
      • 6. Blu, T., Luisier, F.: ‘The sure-let approach to image denoising’, IEEE Trans. Image Process., 2007, 16, (11), pp. 27782786.
    27. 27)
      • 41. Grahn, H.F., Geladi, P.: ‘Techniques and applications of hyperspectral image analysis’ (John Wiley and Sons Ltd, Chichester, 2007).
    28. 28)
      • 29. Forbes, C., Evans, M., Hastings, N., et al: ‘Statistical distributions’ (John Wiley & Sons, 2011).
    29. 29)
      • 22. Kozubowski, T.J.: ‘The inner characterization of geometric stable laws’, Stat. Decisions. Int. J. Stochastic Method Mod., 1994, 12, (3), pp. 307322.
    30. 30)
      • 17. Rider, P.R.: ‘Generalized Cauchy distributions’, Ann. Ins. Stat. Math., 1957, 9, (1), pp. 215223.
    31. 31)
      • 9. Dabov, A., Katkovnik, V., Egiazarian, K.: ‘Image denoising by sparse 3D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (9), pp. 20802095.
    32. 32)
      • 10. Dugad, R., Ahuja, N.: ‘Video denoising by combining Kalman and wiener estimates in: image process’. ICIP 99, Proc. Int. Conf. IEEE, 1999, vol. 4, pp. 152156.
    33. 33)
      • 2. Portilla, J., Strela, V., Wainwright, M.J., et al: ‘Image denoising using scale mixtures of Gaussians in the wavelet domain’, IEEE Trans. Image Process., 2003, 12, (11), pp. 13381351.
    34. 34)
      • 8. Xiong, B., Yin, Z.: ‘A universal denoising framework with a new impulse detector and nonlocal means’, IEEE Trans. Image Process., 2012, 21, (4), pp. 16631675.
    35. 35)
      • 44. Makitalo, M., Foi, A.: ‘Optimal inversion of the Anscombe transformation in low-count Poisson image denoising’, IEEE Trans. Image Process., 2011, 20, (1), pp. 99109.
    36. 36)
      • 45. Makitalo, M., Foi, A., Katkovnik, V., et al: ‘Practical Poissonian-Gaussian noise modeling and fitting for single-image rawdata’, IEEE Trans. Image Process., 2008, 17, (10), pp. 17371754.
    37. 37)
      • 24. Mittnik, S., Rachev, S.T.: ‘Modeling asset returns with alternative stable distributions’, Econ. Rev., 1993, 12, (3), pp. 261330.
    38. 38)
      • 31. Soltani, A., Tafakori, L.: ‘A class of continuous Kernels and Cauchy type heavy tail distributions’, Stat. Probab. Lett., 2013, 83, (4), pp. 10181027.
    39. 39)
      • 18. Arce, G.R.: ‘Nonlinear signal processing: a statistical approach’ (John Wiley & Sons, 2005).
    40. 40)
      • 11. Miao, Z., Jiang, X.: ‘Weighted iterative truncated mean filter’, IEEE Trans. Signal Process., 2013, 61, (16), pp. 41494160.
    41. 41)
      • 26. Rossberg, H.: ‘Positiv definite verteilungsdichten’ (Akademie-Verlag, Berlin, 1991).
    42. 42)
      • 19. Aysal, T.C., Barner, K.E.: ‘Meridian filtering for robust signal processing’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 39493962.
    43. 43)
      • 23. Mittnik, S., Rachev, S.T.: ‘Alternative multivariate stable distributions and their applications to financial modeling in: stable processes and related topics’ (Springer, 1991), pp. 107119.
    44. 44)
      • 30. Kozubowski, T.J.: ‘Exponential mixture representation of geometric stable distributions’, Ann. Inst. Stat. Math., 2000, 52, (2), pp. 231238.
    45. 45)
      • 38. Clerc, M., Kennedy, J.: ‘The particle swarm-explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0554
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0554
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading