Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Underwater image colour constancy based on DSNMF

Different wavelengths of light may undergo changes in underwater environment resulting in altered images. For example, the presence of floating particles causes underwater images to appear bluish and blurred. In this study, the authors propose a method called the deep sparse non-negative matrix factorisation (DSNMF) to estimate the illumination of an underwater image. The image under observation is divided into patches and each channel of a single patch is reshaped as an [ R, G, B ] matrix. The DSNMF method deeply factorises each input matrix into multiple layers with a sparseness constraint. The last layer of the factorised matrix is used as the illumination of the patch. The sparseness constraint adjusts the appearance of the final image. After factorisation, the estimated illumination is applied to each patch of the original image to obtain the final image. Compared with state-of-the-art underwater image enhancement methods using no reference image quality assessment, not only does the proposed method outperforms current techniques in terms of its visual effect and IQA, but is also simpler to implement.

References

    1. 1)
      • 6. Schettini, R., Corchs, S.: ‘Underwater image processing: state of the art of restoration and image enhancement methods’, EURASIP J. Adv. Signal Process., 2010, 2010, (1), pp. 114.
    2. 2)
      • 25. Wen, H., Tian, Y., Huang, T., et al: ‘Single underwater image enhancement with a new optical model’. IEEE Int. Symp. on Circuits and Systems, May 2013, pp. 753756.
    3. 3)
      • 3. Zhang, Y., Liu, L., Sun, D., et al: ‘Single-carrier underwater acoustic communication combined with channel shortening and dichotomous coordinate descent recursive least squares with variable forgetting factor’, IET Commun., 2015, 9, (15), pp. 18671876.
    4. 4)
      • 15. Schechner, Y.Y., Averbuch, Y.: ‘Regularized image recovery in scattering media’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (9), pp. 16551660.
    5. 5)
      • 20. Nvidia, C. U. D. A.: ‘Programming guide’, 2008.
    6. 6)
      • 24. Chao, L., Wang, M.: ‘Removal of water scattering’. Second Int. Conf. on Computer Engineering and Technology, April 2010, pp. 3539.
    7. 7)
      • 2. Skinner, K.A., Johnson-Roberson, M.: ‘Detection and segmentation of underwater archaeological sites surveyed with stereo-vision platforms’. OCEANS'15 MTS/IEEE, Washington, October 2015, pp. 17.
    8. 8)
      • 26. Ancuti, C., Ancuti, C.O., Haber, T., et al: ‘Enhancing underwater images by fusion’. ACM SIGGRAPH 2011 Posters, August 2011, p. 32.
    9. 9)
      • 27. Gu, K., Zhai, G., Liu, M., et al: ‘Brightness preserving video contrast enhancement using S-shaped transfer function’. Visual Communications and Image Processing, November 2013, pp. 16.
    10. 10)
      • 18. Barnard, K., Ciurea, F., Funt, B.: ‘Sensor sharpening for computational colour constancy’, J. Opt. Soc. Am. A, 2001, 18, (11), pp. 27282743.
    11. 11)
      • 14. Narasimhan, S.G., Nayar, S.K.: ‘Contrast restoration of weather degraded images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (6), pp. 713724.
    12. 12)
      • 5. Gao, J., Proctor, A.A., Shi, Y., et al: ‘Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control’, IEEE, 2016, 46, (10), pp. 23232334.
    13. 13)
      • 13. He, D.M., Seet, G.G.: ‘Divergent-beam lidar imaging in turbid water’, Opt. Lasers Eng., 2004, 41, (1), pp. 217231.
    14. 14)
      • 22. Panetta, K., Gao, C., Agaian, S.: ‘No reference colour image contrast and quality measures’, IEEE Trans. Consum. Electron., 2013, 59, (3), pp. 643651.
    15. 15)
      • 4. Fei, T., Kraus, D., Zoubir, A.M.: ‘Contributions to automatic target recognition systems for underwater mine classification’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (1), pp. 505518.
    16. 16)
      • 1. Artur, G., Andrzej, F., Mariusz, W.: ‘Experience with the use of a rigidly-mounted sidescan sonar in a harbour basin bottom investigation’, Ocean Eng., 2015, 109, pp. 439443.
    17. 17)
      • 9. Hou, W., Weidemann, A.D., Gray, D.J., et al: ‘Imagery-derived modulation transfer function and its applications for underwater imaging’. Optical Engineering+Applications, September 2007, p. 669622.
    18. 18)
      • 12. Wang, L.J., Han, J., Zhang, Y., et al: ‘Image fusion via feature residual and statistical matching’, IET Comput. Vis., 2016, 10, (6), pp. 551558.
    19. 19)
      • 8. McGlamery, B.L.: ‘A computer model for underwater camera systems’. Ocean Optics VI, March 1980, pp. 221231.
    20. 20)
      • 21. Chen, Z., Jiang, T., Tian, Y.: ‘Quality assessment for comparing image enhancement algorithms’. IEEE Conf. Computer Vision and Pattern Recognition, June 2014, pp. 30033010.
    21. 21)
      • 16. Chong, H.Y., Gortler, S.J., Zickler, T.: ‘The von Kries hypothesis and a basis for colour constancy’. IEEE 11th Int. Conf. on Computer Vision, October 2007, pp. 18.
    22. 22)
      • 17. Funt, B., Jiang, H.: ‘Nondiagonal colour correction’. Int. Conf. on Image Processing, September 2003, p. I481.
    23. 23)
      • 7. Jaffe, J.S.: ‘Computer modeling and the design of optimal underwater imaging systems’, IEEE J. Ocean. Eng., 1990, 15, (2), pp. 101111.
    24. 24)
      • 29. Gu, K., Zhai, G., Yang, X., et al: ‘Automatic contrast enhancement technology with saliency preservation’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (9), pp. 14801494.
    25. 25)
      • 10. Hou, W., Gray, D.J., Weidemann, A.D., et al: ‘Comparison and validation of point spread models for imaging in natural waters’, Opt. Express, 2008, 16, (13), pp. 99589965.
    26. 26)
      • 30. Gu, K., Zhai, G., Lin, W., et al: ‘The analysis of image contrast: from quality assessment to automatic enhancement’, IEEE Trans. Cybern., 2016, 46, (1), pp. 284297.
    27. 27)
      • 19. Lee, D.D., Seung, H.S.: ‘Algorithms for non-negative matrix factorization’. Advances in Neural Information Processing Systems, 2001, pp. 556562.
    28. 28)
      • 11. Trucco, E., Olmos-Antillon, A.T.: ‘Self-tuning underwater image restoration’, IEEE J. Ocean. Eng., 2006, 31, (2), pp. 511519.
    29. 29)
      • 23. Yang, M., Sowmya, A.: ‘An underwater color image quality evaluation metric’, IEEE Trans. Image Process. , 2015, 24, (12), pp. 60626071.
    30. 30)
      • 31. Gu, K., Zhai, G., Yang, X., et al: ‘Deep learning network for blind image quality assessment’. IEEE Int. Conf. on Image Processing 2014, October 2014, pp. 511515.
    31. 31)
      • 28. Gu, K., Zhai, G., Wang, S., et al: ‘A general histogram modification framework for efficient contrast enhancement’. IEEE Int. Symp. on Circuits and Systems, May 2015, pp. 28162819.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0543
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0543
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address