Underwater image colour constancy based on DSNMF

Underwater image colour constancy based on DSNMF

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Different wavelengths of light may undergo changes in underwater environment resulting in altered images. For example, the presence of floating particles causes underwater images to appear bluish and blurred. In this study, the authors propose a method called the deep sparse non-negative matrix factorisation (DSNMF) to estimate the illumination of an underwater image. The image under observation is divided into patches and each channel of a single patch is reshaped as an [ R, G, B ] matrix. The DSNMF method deeply factorises each input matrix into multiple layers with a sparseness constraint. The last layer of the factorised matrix is used as the illumination of the patch. The sparseness constraint adjusts the appearance of the final image. After factorisation, the estimated illumination is applied to each patch of the original image to obtain the final image. Compared with state-of-the-art underwater image enhancement methods using no reference image quality assessment, not only does the proposed method outperforms current techniques in terms of its visual effect and IQA, but is also simpler to implement.


    1. 1)
      • 1. Artur, G., Andrzej, F., Mariusz, W.: ‘Experience with the use of a rigidly-mounted sidescan sonar in a harbour basin bottom investigation’, Ocean Eng., 2015, 109, pp. 439443.
    2. 2)
      • 2. Skinner, K.A., Johnson-Roberson, M.: ‘Detection and segmentation of underwater archaeological sites surveyed with stereo-vision platforms’. OCEANS'15 MTS/IEEE, Washington, October 2015, pp. 17.
    3. 3)
      • 3. Zhang, Y., Liu, L., Sun, D., et al: ‘Single-carrier underwater acoustic communication combined with channel shortening and dichotomous coordinate descent recursive least squares with variable forgetting factor’, IET Commun., 2015, 9, (15), pp. 18671876.
    4. 4)
      • 4. Fei, T., Kraus, D., Zoubir, A.M.: ‘Contributions to automatic target recognition systems for underwater mine classification’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (1), pp. 505518.
    5. 5)
      • 5. Gao, J., Proctor, A.A., Shi, Y., et al: ‘Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control’, IEEE, 2016, 46, (10), pp. 23232334.
    6. 6)
      • 6. Schettini, R., Corchs, S.: ‘Underwater image processing: state of the art of restoration and image enhancement methods’, EURASIP J. Adv. Signal Process., 2010, 2010, (1), pp. 114.
    7. 7)
      • 7. Jaffe, J.S.: ‘Computer modeling and the design of optimal underwater imaging systems’, IEEE J. Ocean. Eng., 1990, 15, (2), pp. 101111.
    8. 8)
      • 8. McGlamery, B.L.: ‘A computer model for underwater camera systems’. Ocean Optics VI, March 1980, pp. 221231.
    9. 9)
      • 9. Hou, W., Weidemann, A.D., Gray, D.J., et al: ‘Imagery-derived modulation transfer function and its applications for underwater imaging’. Optical Engineering+Applications, September 2007, p. 669622.
    10. 10)
      • 10. Hou, W., Gray, D.J., Weidemann, A.D., et al: ‘Comparison and validation of point spread models for imaging in natural waters’, Opt. Express, 2008, 16, (13), pp. 99589965.
    11. 11)
      • 11. Trucco, E., Olmos-Antillon, A.T.: ‘Self-tuning underwater image restoration’, IEEE J. Ocean. Eng., 2006, 31, (2), pp. 511519.
    12. 12)
      • 12. Wang, L.J., Han, J., Zhang, Y., et al: ‘Image fusion via feature residual and statistical matching’, IET Comput. Vis., 2016, 10, (6), pp. 551558.
    13. 13)
      • 13. He, D.M., Seet, G.G.: ‘Divergent-beam lidar imaging in turbid water’, Opt. Lasers Eng., 2004, 41, (1), pp. 217231.
    14. 14)
      • 14. Narasimhan, S.G., Nayar, S.K.: ‘Contrast restoration of weather degraded images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (6), pp. 713724.
    15. 15)
      • 15. Schechner, Y.Y., Averbuch, Y.: ‘Regularized image recovery in scattering media’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (9), pp. 16551660.
    16. 16)
      • 16. Chong, H.Y., Gortler, S.J., Zickler, T.: ‘The von Kries hypothesis and a basis for colour constancy’. IEEE 11th Int. Conf. on Computer Vision, October 2007, pp. 18.
    17. 17)
      • 17. Funt, B., Jiang, H.: ‘Nondiagonal colour correction’. Int. Conf. on Image Processing, September 2003, p. I481.
    18. 18)
      • 18. Barnard, K., Ciurea, F., Funt, B.: ‘Sensor sharpening for computational colour constancy’, J. Opt. Soc. Am. A, 2001, 18, (11), pp. 27282743.
    19. 19)
      • 19. Lee, D.D., Seung, H.S.: ‘Algorithms for non-negative matrix factorization’. Advances in Neural Information Processing Systems, 2001, pp. 556562.
    20. 20)
      • 20. Nvidia, C. U. D. A.: ‘Programming guide’, 2008.
    21. 21)
      • 21. Chen, Z., Jiang, T., Tian, Y.: ‘Quality assessment for comparing image enhancement algorithms’. IEEE Conf. Computer Vision and Pattern Recognition, June 2014, pp. 30033010.
    22. 22)
      • 22. Panetta, K., Gao, C., Agaian, S.: ‘No reference colour image contrast and quality measures’, IEEE Trans. Consum. Electron., 2013, 59, (3), pp. 643651.
    23. 23)
      • 23. Yang, M., Sowmya, A.: ‘An underwater color image quality evaluation metric’, IEEE Trans. Image Process. , 2015, 24, (12), pp. 60626071.
    24. 24)
      • 24. Chao, L., Wang, M.: ‘Removal of water scattering’. Second Int. Conf. on Computer Engineering and Technology, April 2010, pp. 3539.
    25. 25)
      • 25. Wen, H., Tian, Y., Huang, T., et al: ‘Single underwater image enhancement with a new optical model’. IEEE Int. Symp. on Circuits and Systems, May 2013, pp. 753756.
    26. 26)
      • 26. Ancuti, C., Ancuti, C.O., Haber, T., et al: ‘Enhancing underwater images by fusion’. ACM SIGGRAPH 2011 Posters, August 2011, p. 32.
    27. 27)
      • 27. Gu, K., Zhai, G., Liu, M., et al: ‘Brightness preserving video contrast enhancement using S-shaped transfer function’. Visual Communications and Image Processing, November 2013, pp. 16.
    28. 28)
      • 28. Gu, K., Zhai, G., Wang, S., et al: ‘A general histogram modification framework for efficient contrast enhancement’. IEEE Int. Symp. on Circuits and Systems, May 2015, pp. 28162819.
    29. 29)
      • 29. Gu, K., Zhai, G., Yang, X., et al: ‘Automatic contrast enhancement technology with saliency preservation’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (9), pp. 14801494.
    30. 30)
      • 30. Gu, K., Zhai, G., Lin, W., et al: ‘The analysis of image contrast: from quality assessment to automatic enhancement’, IEEE Trans. Cybern., 2016, 46, (1), pp. 284297.
    31. 31)
      • 31. Gu, K., Zhai, G., Yang, X., et al: ‘Deep learning network for blind image quality assessment’. IEEE Int. Conf. on Image Processing 2014, October 2014, pp. 511515.

Related content

This is a required field
Please enter a valid email address