Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust hypothesis generation method using binary blob analysis for multi-lane detection

The vision-based lane detection is an important component of advanced driver assistance systems and it is essential for lane departure warning, lane keeping, and vehicle localisation. However, it is a challenging problem to improve the robustness of multi-lane detection due to factors, such as perspective effect, possible low visibility of lanes, and partial occlusions. To deal with these issues, the authors propose an improved lane hypothesis generation method using a reliable binary blob analysis. Most existing top-view based methods focused on the lane model fitting, but they neglected the reliability of hypothesis generation and the effectiveness in challenging conditions. To cope with these shortcomings, the authors carried out vanishing point detection and inverse perspective mapping to remove the perspective effect from the road images. Then two-stage binary blob filtering and blob verification techniques using classification are introduced to improve the robustness of lane hypothesis generation for lane detection. The experimental results show that the average detection accuracy on a new challenging multi-lane dataset is 97.7%. The performance of the proposed method outperforms that of the state-of-the-art method by 1.6% in detection accuracy on the Caltech lane benchmark dataset.

References

    1. 1)
      • 2. Clanton, J.M., Bevly, D.M., Hodel, A.S.: ‘A Low-cost solution for an integrated multisensor lane departure warning system’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (1), pp. 4759.
    2. 2)
      • 19. Sezqin, M., Sankru, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, J. Electron. Imaging, 2004, 13, (1), pp. 146165.
    3. 3)
      • 22. Duda, R.O., Hart, P.E.: ‘Use of the Hough transformation to detect lines and curves in pictures’, Commun. ACM, 1972, 15, (1), pp. 1115.
    4. 4)
      • 4. Aly, M.: ‘Real time detection of lane markers in urban streets’. Proc. Intelligent Vehicles Symp., 2008, pp. 712.
    5. 5)
      • 1. Tao, Z., Bonnifait, P., Fremont, V., et al: ‘Mapping and localization using GPS, lane markings and proprioceptive sensors’. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013, pp. 406412.
    6. 6)
      • 14. Jiang, R.Y., Reinhard, K., Tobi, V.: ‘Lane detection and tracking using a new lane model and distance transform’, Mach. Vis. Appl., 2011, 22, pp. 4759.
    7. 7)
      • 7. Sawano, H., Okada, M.: ‘A road extraction method by an active contour model with inertia and differential features’, IEICE Trans. Inf. Syst., 2006, 89-D, (7), pp. 22572267.
    8. 8)
      • 8. Nieto, M., Salgado, L., Jaureguizar, F., et al: ‘Robust multiple lane road modeling based on perspective analysis’. Proc. Int. Conf. on Image Processing, 2008, pp. 23962399.
    9. 9)
      • 9. Gravac, S., Goma, A.: ‘Detection of road borders based on texture classification’, Int. J. Adv. Robot. Syst., 2012, 9, pp. 112.
    10. 10)
      • 21. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, pp. 886893.
    11. 11)
      • 10. Zhou, S.Y., Jiang, Y.H., Xi, J.Q., et al: ‘A novel lane detection based on geometrical model and Gabor filter’, Proc. Intelligent Vehicles Symp., 2010, pp. 5964.
    12. 12)
      • 5. Hillel, A.B., Lerner, R., Levi, D., et al: ‘Recent progress in road and lane detection: a survey’, Mach. Vis. Appl., 2014, 25, (3), pp. 727745.
    13. 13)
      • 15. Shin, B.S., Tao, J.L., Klette, R.: ‘A superparticle filter for lane detection’, Pattern Recognit., 2015, 48, (11), pp. 33333345.
    14. 14)
      • 18. Kong, H., Sarma, S.E., Tang, F.: ‘Generalizing Laplacian of Gaussian filters for vanishing-Point detection’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 408418.
    15. 15)
      • 23. Niu, J.W., Lu, J., Xu, M.L., et al: ‘Robust lane detection using two-stage feature extraction with curve fitting’, Pattern Recognit., 2015, in press.
    16. 16)
      • 12. Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381395.
    17. 17)
      • 3. Huang, A.S., Moore, D., Antone, M., et al: ‘Finding multiple lanes in urban road networks with vision and LIDAR’, Auton. Robots, 2009, 26, (2), pp. 103122.
    18. 18)
      • 17. Bertozz, M., Broggi, A., Fascioli, A.: ‘Stereo inverse perspective mapping: theory and applications’, Image Vis. Comput., 1998, 16, (8), pp. 585590.
    19. 19)
      • 13. Kim, Z.W.: ‘Robust lane detection and tracking in challenging scenarios’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (1), pp. 1626.
    20. 20)
      • 20. Haralick, R.M., Shapiro, L.G.: ‘Computer and robot vision’ (Addison-Wesley Longman Press, 1992, 1st edn.).
    21. 21)
      • 6. Wang, Y., Teoh, E., Shen, D.: ‘Lane detection and tracking using b-snake’, Image Vis. Comput., 2004, 22, pp. 269280.
    22. 22)
      • 11. Cheng, H.Y., Yu, C.C., Tseng, C.C., et al: ‘Environment classification and hierarchical lane detection for structured and unstructured roads’, IET Comput. Vis., 2010, 4, (1), pp. 3749.
    23. 23)
      • 16. Mammeri, A., Boukerche, A., Tang, Z.Z.: ‘A real-time lane marking localization, tracking and communication system’, Comput. Commun., 2016, 73, pp. 132143.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0506
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0506
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address