http://iet.metastore.ingenta.com
1887

Splicing image forgery detection using textural features based on the grey level co-occurrence matrices

Splicing image forgery detection using textural features based on the grey level co-occurrence matrices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To further improve the detection rate with relatively low dimension feature vector, a novel passive splicing detection method using textural features based on the grey level co-occurrence matrices, namely TF-GLCM, is proposed in this study. In the TF-GLCM, the GLCM are calculated based on the difference block discrete cosine transform arrays to capture the textural information and the spatial relationship between image pixels sufficiently. The discriminable properties contained in the GLCM are described by six textural features, which include two new introduced ones and four independent ones. In addition, the statistical moments mean Me and standard deviation SD of textural features are used instead of themselves as elements in feature vector to reduce the dimensionality of feature vector and computational complexity. A support vector machine is employed for classification purpose. Experimental results show that the TF-GLCM achieves the detection rates of 98% on CASIA v1.0, and 97% on CASIA v2.0 with 96-D feature vector. The detection rates benefit from the two new textural features. Meanwhile, the TF-GLCM is superior to some state-of-the-art methods with lower dimension feature vector.

References

    1. 1)
      • H.H. Tsai , C.C. Liu .
        1. Tsai, H.H., Liu, C.C.: ‘Wavelet-based image watermarking with visibility range estimation based on HVS and neural networks’, Pattern Recognit., 2011, 44, (4), pp. 751763.
        . Pattern Recognit. , 4 , 751 - 763
    2. 2)
      • B. Mahdian , S. Saic .
        2. Mahdian, B., Saic, S.: ‘A bibliography on blind methods for identifying image forgery’, Signal Process. Image Commun., 2010, 25, (6), pp. 389399.
        . Signal Process. Image Commun. , 6 , 389 - 399
    3. 3)
      • T.J. De Carvalho , C. Riess , E. Angelopoulou .
        3. De Carvalho, T.J., Riess, C., Angelopoulou, E., et al: ‘Exposing digital image forgeries by illumination color classification’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (7), pp. 11821194.
        . IEEE Trans. Inf. Forensics Sec. , 7 , 1182 - 1194
    4. 4)
      • E.S.M. El-Alfy , M.A. Qureshi .
        4. El-Alfy, E.S.M., Qureshi, M.A.: ‘Combining spatial and DCT based Markov features for enhanced blind detection of image splicing’, Formal Pattern Anal. Applications, 2014, 18, (3), pp. 111.
        . Formal Pattern Anal. Applications , 3 , 1 - 11
    5. 5)
      • Z. He , W. Sun , W. Lu .
        5. He, Z., Sun, W., Lu, W., et al: ‘Digital image splicing detection based on approximate run length’, Pattern Recognit. Lett., 2011, 32, (12), pp. 15911597.
        . Pattern Recognit. Lett. , 12 , 1591 - 1597
    6. 6)
      • Y.Q. Shi , C. Chen , W. Chen .
        6. Shi, Y.Q., Chen, C., Chen, W.: ‘A natural image model approach to splicing detection’. Proc. ACM Multimedia and Security Workshop, Texas, USA, 2007, pp. 334340.
        . Proc. ACM Multimedia and Security Workshop , 334 - 340
    7. 7)
      • Z. He , W. Lu , W. Sun .
        7. He, Z., Lu, W., Sun, W., et al: ‘Digital image splicing detection based on markov features in DCT and DWT domain’, Pattern Recognit., 2012, 45, (12), pp. 42924299.
        . Pattern Recognit. , 12 , 4292 - 4299
    8. 8)
      • A.A. Alahmadi , M. Hussain , H. Aboalsamh .
        8. Alahmadi, A.A., Hussain, M., Aboalsamh, H., et al: ‘Splicing image forgery detection based on DCT and local binary pattern’. Proc. IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Austin, TX, USA, December 2013, pp. 253256.
        . Proc. IEEE Global Conf. on Signal and Information Processing (GlobalSIP) , 253 - 256
    9. 9)
      • G. Muhammad , M.H. Al-Hammadi , M. Hussain .
        9. Muhammad, G., Al-Hammadi, M.H., Hussain, M., et al: ‘Image forgery detection using steerable pyramid transform and local binary pattern’, Mach. Vis. Appl., 2014, 25, (4), pp. 985995.
        . Mach. Vis. Appl. , 4 , 985 - 995
    10. 10)
      • S.Q. Saleh , M. Hussain , G. Muhammad .
        10. Saleh, S.Q., Hussain, M., Muhammad, G., et al: ‘Evaluation of image forgery detection using multi-scale weber local descriptors’, Int. J. Artif. Intell. Tools, 2015, 24, (4), pp. 416424.
        . Int. J. Artif. Intell. Tools , 4 , 416 - 424
    11. 11)
      • S.S. Sastry , T.V. Kumari , C.N. Rao .
        11. Sastry, S.S., Kumari, T.V., Rao, C.N., et al: ‘Transition temperatures of thermotropic liquid crystals from the local binary gray level cooccurrence matrix’, Adv. Condens. Matter Phys., 2012, 2012, (8), pp. 217294.
        . Adv. Condens. Matter Phys. , 8 , 217 - 294
    12. 12)
      • F.R.D. Siqueira , W.R. Schwartz , H. Pedrini .
        12. Siqueira, F.R.D., Schwartz, W.R., Pedrini, H.: ‘Multi-scale gray level co-occurrence matrices for texture description’, Neurocomputing, 2013, 120, (10), pp. 336345.
        . Neurocomputing , 10 , 336 - 345
    13. 13)
      • S. Chen , C. Wu , D. Chen .
        13. Chen, S., Wu, C., Chen, D., et al: ‘Scene classification based on gray level-gradient co-occurrence matrix in the neighborhood of interest points’. Proc. IEEE Int. Conf. Intelligent Computing and Intelligent System, Shanghai, China, November 2009, pp. 482485.
        . Proc. IEEE Int. Conf. Intelligent Computing and Intelligent System , 482 - 485
    14. 14)
      • R.M. Haralick , K. Shanmugam , I. Dinstein .
        14. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans Syst. Man Cybern., 2010, smc-3, (6), pp. 610621.
        . IEEE Trans Syst. Man Cybern. , 6 , 610 - 621
    15. 15)
      • J. Yang , J. Guo .
        15. Yang, J., Guo, J.: ‘Image texture feature extraction method based on regional average binary gray level difference co-occurrence matrix’. Proc. IEEE Int. Conf. Virtual Reality and Visualization (ICVRV), Beijing, China, November 2011, pp. 239242.
        . Proc. IEEE Int. Conf. Virtual Reality and Visualization (ICVRV) , 239 - 242
    16. 16)
      • G.C. Chen , B. Su , S.L. Wang .
        16. Chen, G.C., Su, B., Wang, S.L.: ‘Blind detection of splicing imagebased on gray level co-occurrence matrix of image DCT domain’, J. Shanghai Jiaotong Univ., 2011, 45, (10), pp. 15471551.
        . J. Shanghai Jiaotong Univ. , 10 , 1547 - 1551
    17. 17)
      • R.W. Ibrahim , Z. Moghaddasi , H.A. Jalab .
        17. Ibrahim, R.W., Moghaddasi, Z., Jalab, H.A., et al: ‘Fractional differential texture descriptors based on the machado entropy for image splicing detection’, Entropy, 2015, 17, (7), pp. 47754785.
        . Entropy , 7 , 4775 - 4785
    18. 18)
      • P. Sutthiwan , Y.Q. Shi , W. Su .
        18. Sutthiwan, P., Shi, Y.Q., Su, W., et al: ‘Rake transform and edge statistics for image forgery detection’. Proc. IEEE Int. Conf. Multimedia Expo (ICME), Singapore, July 2010, pp. 14631468.
        . Proc. IEEE Int. Conf. Multimedia Expo (ICME) , 1463 - 1468
    19. 19)
      • B. Su , Q. Yuan , S. Wang .
        19. Su, B., Yuan, Q., Wang, S., et al: ‘Enhanced state selection Markov model for image splicing detection’, Eurasip J. Wirel. Commun. Netw., 2014, 2014, (1), pp. 254283.
        . Eurasip J. Wirel. Commun. Netw. , 1 , 254 - 283
    20. 20)
      • L. Nanni , S. Brahnam , S. Ghidoni .
        20. Nanni, L., Brahnam, S., Ghidoni, S., et al: ‘Improving the descriptors extracted from the co-occurrence matrix using preprocessing approaches’, Expert Syst. Appl., 2015, 42, (22), pp. 89899000.
        . Expert Syst. Appl. , 22 , 8989 - 9000
    21. 21)
      • F.T. Ulaby , F. Kouyate , B. Brisco .
        21. Ulaby, F.T., Kouyate, F., Brisco, B., et al: ‘Textural information in SAR images’, IEEE Trans. Geosci. Remote Sens., 1986, 1986, (2), pp. 235245.
        . IEEE Trans. Geosci. Remote Sens. , 2 , 235 - 245
    22. 22)
      • A. Baraldi , F. Parmiggiani .
        22. Baraldi, A., Parmiggiani, F.: ‘Investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters’, IEEE Trans. Geosci. Remote Sens., 1995, 33, (2), pp. 293304.
        . IEEE Trans. Geosci. Remote Sens. , 2 , 293 - 304
    23. 23)
      • 23. CASTA Tampered Image Detection Evaluation Database (CASIA TIDE v1.0)’. Available at http://forensics.idealtest.org:8080/idex_vl.html.
        .
    24. 24)
      • 24. CASTA Tampered Image Detection Evaluation Database (CASIA TIDE v2.0)’. Available at http://forensics.idealtest.org:8080/idex_v2.html.
        .
    25. 25)
      • S. Agarwal , S. Chand .
        25. Agarwal, S., Chand, S.: ‘Image forgery detection using multi scale entropy filter and local phase quantization’, Graph. Signal Process., 2015, 10, pp. 7885.
        . Graph. Signal Process. , 78 - 85
    26. 26)
      • C.C. Chang , C.J. Lin .
        26. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, (3), pp. 389396.
        . ACM Trans. Intell. Syst. Technol. , 3 , 389 - 396
    27. 27)
      • C.W. Hsu , C.C. Chang , C.J. Lin . (2003)
        27. Hsu, C.W., Chang, C.C., Lin, C.J.: ‘A practical guide to support vector classification’ (National Taiwan University, 2003), pp. 116.
        .
    28. 28)
      • T. Fawcett .
        28. Fawcett, T.: ‘ROC Graphs: Notes and practical considerations for researchers’, Mach. Learn., 2004, 31, (1), pp. 138.
        . Mach. Learn. , 1 , 1 - 38
    29. 29)
      • M. Hussain , G. Muhammad , S.Q. Saleh .
        29. Hussain, M., Muhammad, G., Saleh, S.Q., et al: ‘Image forgery detection using multi-resolution weber local descriptors’. Proc. IEEE Eurocon, Zagreb, Croatia, July 2013, pp. 15701577.
        . Proc. IEEE Eurocon , 1570 - 1577
    30. 30)
      • G. Muhammad , M.S. Dewan , M. Moniruzzaman .
        30. Muhammad, G., Dewan, M.S., Moniruzzaman, M., et al: ‘Image forgery detection using Gabor filters and DCT’. Proc. IEEE Int. Conf. Electrical Engineering Information Communication Technology, Dhaka, Bangladesh, April 2014, pp. 15.
        . Proc. IEEE Int. Conf. Electrical Engineering Information Communication Technology , 1 - 5
    31. 31)
      • W. Wang , J. Dong , T. Tan .
        31. Wang, W., Dong, J., Tan, T.: ‘Effective image splicing detection based on image chroma’. Proc. IEEE Int. Conf. Image Processing (ICIP), Cairo, Egypt, January 2009, pp. 12571260.
        . Proc. IEEE Int. Conf. Image Processing (ICIP) , 1257 - 1260
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0238
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address