http://iet.metastore.ingenta.com
1887

Real-time multi-feature based fire flame detection in video

Real-time multi-feature based fire flame detection in video

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors present a new approach to detect fire flame by processing and analysing the stationary camera videos. For a fire detection system, it is desired to be sensitive and reliable. The proposed method improves not only the sensitivity but also the reliability through reducing the susceptibility to false alarms. The proposed approach based on multi-feature, i.e. chromatic features, dynamic features, texture features, and contour features, can both improve the sensitivity and reliability in fire detection. In their approach, the authors adopt a novel algorithm to extract the moving region and analyse the frequency of flickers. Experimental results show that the proposed method can run in real-time and performs favourably against the state-of-the-art methods with higher accuracy in fire videos, lower false alarm rates in non-fire videos and faster response time.

References

    1. 1)
      • A.E. Çetin , K. Dimitropoulos , B. Gouverneur .
        1. Çetin, A.E., Dimitropoulos, K., Gouverneur, B., et al: ‘Video fire detection–review’, Digit. Signal Process., 2013, 23, (6), pp. 18271843.
        . Digit. Signal Process. , 6 , 1827 - 1843
    2. 2)
      • T.H. Chen , P.H. Wu , Y.C. Chiou .
        2. Chen, T.H., Wu, P.H., Chiou, Y.C.: ‘An early fire-detection method based on image processing’. Proc. IEEE Int. Conf. Image Processing, ICIP 2004, 24–27 October 2004, vol. 3, pp. 17071710.
        . Proc. IEEE Int. Conf. Image Processing, ICIP 2004 , 1707 - 1710
    3. 3)
      • B.U. Töreyin , Y. Dedeoğlu , U. Güdükbay .
        3. Töreyin, B.U., Dedeoğlu, Y., Güdükbay, U., et al: ‘Computer vision based method for real-time fire and flame detection’, Pattern Recognit. Lett., 2006, 27, (1), pp. 4958.
        . Pattern Recognit. Lett. , 1 , 49 - 58
    4. 4)
      • B.U. Toreyin , A.E. Cetin .
        4. Toreyin, B.U., Cetin, A.E.: ‘Online detection of fire in video’. Poc. IEEE Int. Conf. Computer Vision and Pattern Recognition, CVPR 2007, Minneapolis, MN, 17–22 June 2007, pp. 15.
        . Poc. IEEE Int. Conf. Computer Vision and Pattern Recognition, CVPR 2007 , 1 - 5
    5. 5)
      • F.X. Yu , J.Y. Su , Z.M. Lu .
        5. Yu, F.X., Su, J.Y., Lu, Z.M., et al: ‘Multi-feature based fire detection in video’, Int. J. Innov. Comput. Inf. Control, 2008, 4, (8), pp. 19871993.
        . Int. J. Innov. Comput. Inf. Control , 8 , 1987 - 1993
    6. 6)
      • T. Celik , H. Demirel .
        6. Celik, T., Demirel, H.: ‘Fire detection in video sequences using a generic color model’, Fire Saf. J., 2009, 44, (2), pp. 147158.
        . Fire Saf. J. , 2 , 147 - 158
    7. 7)
      • B.C. Ko , K.H. Cheong , J.Y. Nam .
        7. Ko, B.C., Cheong, K.H., Nam, J.Y.: ‘Fire detection based on vision sensor and support vector machines’, Fire Saf. J., 2009, 44, (3), pp. 322329.
        . Fire Saf. J. , 3 , 322 - 329
    8. 8)
      • P.V.K. Borges , E. Izquierdo .
        8. Borges, P.V.K., Izquierdo, E.: ‘A probabilistic approach for vision-based fire detection in videos’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (5), pp. 721731.
        . IEEE Trans. Circuits Syst. Video Technol. , 5 , 721 - 731
    9. 9)
      • T. Celik .
        9. Celik, T.: ‘Fast and efficient method for fire detection using image processing’, ETRI J., 2010, 32, (6), pp. 881890.
        . ETRI J. , 6 , 881 - 890
    10. 10)
      • Y. Habiboglu , O. Gunay , A.E. Cetin .
        10. Habiboglu, Y., Gunay, O., Cetin, A.E.: ‘Flame detection method in video using covariance descriptors’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Prague, 22–27 May 2011, pp. 18171820.
        . Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing , 1817 - 1820
    11. 11)
      • T. Xuan Truong , J.M. Kim .
        11. Xuan Truong, T., Kim, J.M.: ‘Fire flame detection in video sequences using multi-stage pattern recognition techniques’, Eng. Appl. Artif. Intell., 2012, 25, (7), pp. 13651372.
        . Eng. Appl. Artif. Intell. , 7 , 1365 - 1372
    12. 12)
      • S. Rinsurongkawong , M. Ekpanyapong , M.N. Dailey .
        12. Rinsurongkawong, S., Ekpanyapong, M., Dailey, M.N.: ‘Fire detection for early fire alarm based on optical flow video processing’. Proc. IEEE Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 2012, pp. 14.
        . Proc. IEEE Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology , 1 - 4
    13. 13)
      • M. Mueller , P. Karasev , I. Kolesov .
        13. Mueller, M., Karasev, P., Kolesov, I., et al: ‘Optical flow estimation for flame detection in videos’, IEEE Trans. Image Process., 2013, 22, (7), pp. 27862797.
        . IEEE Trans. Image Process. , 7 , 2786 - 2797
    14. 14)
      • Z. Zhang , T. Shen , J. Zou .
        14. Zhang, Z., Shen, T., Zou, J.: ‘An improved probabilistic approach for fire detection in videos’, Fire Technol., 2014, 50, (3), pp. 745752.
        . Fire Technol. , 3 , 745 - 752
    15. 15)
      • P. Foggia , A. Saggese , M. Vento .
        15. Foggia, P., Saggese, A., Vento, M.: ‘Real-time fire detection for video-surveillance applications using a combination of experts based on color, shape, and motion’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (9), pp. 15451556.
        . IEEE Trans. Circuits Syst. Video Technol. , 9 , 1545 - 1556
    16. 16)
      • W.S. Qureshi , M. Ekpanyapong , M.N. Dailey .
        16. Qureshi, W.S., Ekpanyapong, M., Dailey, M.N., et al: ‘QuickBlaze: early fire detection using a combined video processing approach’, Fire Technol., 2016, 55 pp. 12931317.
        . Fire Technol. , 1293 - 1317
    17. 17)
      • G.R. Bradski , J.W. Davis .
        17. Bradski, G.R., Davis, J.W.: ‘Motion segmentation and pose recognition with motion history gradients’, Mach. Vis. Appl., 2002, 13, (3), pp. 174184.
        . Mach. Vis. Appl. , 3 , 174 - 184
    18. 18)
      • B.W. Albers , A.K. Agrawal .
        18. Albers, B.W., Agrawal, A.K.: ‘Schlieren analysis of an oscillating gas-jet diffusion flame’, Combust. Flame, 1999, 119, (1), pp. 8494.
        . Combust. Flame , 1 , 84 - 94
    19. 19)
      • K.J. Falconer . (1990)
        19. Falconer, K.J.: ‘Fractal geometry: mathematical foundations and applications’ (John Wiley Press, Chichester, 1990).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0193
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address