access icon free Wavelet denoising of multiframe optical coherence tomography data using similarity measures

Speckle noise is the main cause of image degradation in optical coherence tomography, which makes denoising an essential process to obtain quality images. This study proposes a wavelet-based denoising technique in which detail coefficients are assigned weights using similarity measures of Pearson's correlation coefficient and structural similarity index (SSIM). Stationary wavelet transform is used for SSIM which is an image quality measure is used as optimisation criterion to denoise images in this study. Procedure of weight computation is discussed in detail. Average of these detailed components is used to denoise the images. Comparison of proposed technique with the existing techniques has been carried out at length. Extensive qualitative and quantitative analysis reveal that the proposed technique is efficient and performs better in terms of noise reduction while maintaining the structural contents of the image.

Inspec keywords: speckle; image denoising; optimisation; correlation methods; optical tomography; wavelet transforms

Other keywords: structural contents; speckle noise; noise reduction; image quality measure; image denoising; Pearson correlation coefficient; wavelet-based denoising; structural similarity index; similarity measures; multiframe optical coherence tomography data; stationary wavelet transform; optimisation criterion; SSIM; image degradation

Subjects: Optical, image and video signal processing; Function theory, analysis; Optical interference and speckle; Optimisation techniques; Integral transforms; Optimisation techniques; Integral transforms; Computer vision and image processing techniques; Image processing and restoration

References

    1. 1)
      • 2. Goodman, J.: ‘Some fundamental properties of speckle*’, J. Opt. Soc. Am., 1976, 66, (11), pp. 11451150.
    2. 2)
      • 17. Liu, C., Wong, A., Fieguth, P., et al: ‘Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions’, Biomed. Imaging, 2014, 14, (37), pp. 19.
    3. 3)
      • 18. Luan, F., Wu, Y.: ‘Application of RPCA in optical coherence tomography for speckle noise reduction’, Laser Phys. Lett., 2013, 10, pp. 3543.
    4. 4)
      • 32. Stigler, S., Stephen, M.: ‘Francis Galton's account of the invention of correlation’, Stat. Sci., 1989, 4, (2), pp. 7379.
    5. 5)
      • 33. Weisstein, E.: ‘Correlation coefficient MathWorld – a wolfram web resource’, 2006. Available at: http://mathworld.wolfram.com/CorrelationCoefficient.html, January 2012.
    6. 6)
      • 34. Rehman, A., Wang, Z., Brunet, D., et al: ‘SSIM-inspired image denoising using sparse representation’. Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 2011, pp. 11211124.
    7. 7)
      • 23. Chitchian, S., Mayer, M., Boretsky, A., et al: ‘Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform’, J. Biomed. Opt., 2012, 17, (11), doi: 10.1117/1.JBO.17.11.116009..
    8. 8)
      • 41. Image Denoising using Evolutionary Algorithm: Source Code. Available at http://www.mathworks.com/matlabcentral/fileexchange/46649-image-denoising-using-evolutionary-algorithm/, January 2015.
    9. 9)
      • 6. Coupé, P., Hellier, P., Kervrann, C., et al: ‘Nonlocal means-based speckle filtering for ultrasound images’, IEEE Trans. Image Process., 2009, 18, (10), pp. 22212229.
    10. 10)
      • 10. Rogowska, J., Brezinski, M.E.: ‘Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging’, IEEE Trans. Med. Imaging, 2000, 19, pp. 12611266.
    11. 11)
      • 27. Anupriya, A., Tayal, A.: ‘Wavelet based image denoising using self-organizing migration algorithm’, CiiT Int. J. Digital Image Process., 2012, 4, (10), pp. 542546.
    12. 12)
      • 25. Chong, B., Zhu, Y.: ‘Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter’, Opt. Commun., 2013, 291, pp. 461469, doi: 10.1117/1.JBO.19.5.056009.
    13. 13)
      • 20. Adler, D., Ko, T., Fujimoto, J.: ‘Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter’, Opt. Lett., 2004, 29, (24), pp. 28782880.
    14. 14)
      • 1. Fujimoto, J., Brezinski, M., Tearney, G., et al: ‘Optical biopsy and imaging using optical computed tomography’, Nat. Med., 1995, 1, (9), pp. 970972.
    15. 15)
      • 28. Ozcan, A., Bilenca, A., Desjardins, A.E., et al: ‘Speckle reduction in optical coherence tomography images using digital filtering’, J. Opt. Soc. Am. A, 2007, 24, (7), pp. 19011910.
    16. 16)
      • 39. Optimized Bayesian non-local means filter Code. Available at https://sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/speckle-reduction/obnlm-package.
    17. 17)
      • 35. Rehman, A., Rostani, M., Wang, Z., et al: ‘SSIM-inspired image restoration using sparse representation’, EURASIP J. Adv. Signal Process., 2012, 1, (16).
    18. 18)
      • 21. Yue, Y., Croitoru, M., Bidani, A., et al: ‘Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images’, IEEE Trans. Med. Imaging, 2006, 25, (3), pp. 297311.
    19. 19)
      • 8. Kafieh, R., Rabbani, H.: ‘Optical coherence tomography noise reduction over learned dictionaries with introduction of complex wavelet for noise reduction’. SPIE Proc. on Wavelets and Sparsity XV, San Diego, California, United States, 2013, vol. 8858.
    20. 20)
      • 16. Fang, L., Li, S., Nie, Q., et al: ‘Sparsity based denoising of spectral domain optical coherence tomography images’, Biomed. Opt. Express, 2012, 3, (5), pp. 927942.
    21. 21)
      • 38. Dataset for Denoising Ophthalmic SDOCT Images. Available at http://people.duke.edu/~sf59/Fang_BOE_2012.htm.
    22. 22)
      • 13. Wong, A., Mishra, A., Bizheva, K., et al: ‘General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery’, Opt. Express, 2010, 18, (8), pp. 83388352.
    23. 23)
      • 15. Marks, D., Ralston, T., Boppart, S.: ‘Speckle reduction by I-divergence regularization in optical coherence tomography’, J. Opt. Soc. Am., 2005, 22, (11), pp. 23662371.
    24. 24)
      • 14. Bian, L., Suo, J., Chen, F., et al: ‘Multi-frame denoising of high speed optical coherence tomography data using inter-frame and intra-frame priors’, J. Biomed. Opt., 2014, 20, (3), doi: 10.1117/1.JBO.20.3.036006..
    25. 25)
      • 43. Fisher, Y.: ‘Fractal image compression: theory and application’ (Springer Verlag, New York, 1995), Section 2.4.
    26. 26)
      • 4. Rogowska, J., Brezinski, M.E.: ‘Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images’, Phys. Med. Biol., 2002, 47, (4), pp. 641655.
    27. 27)
      • 7. Szkulmowski, M., Gorczynska, I., Szlag, D., et al: ‘Efficient reduction of speckle noise in optical coherence tomography’, Opt. Express, 2012, 20, (2), pp. 13371359.
    28. 28)
      • 29. Borsdorf, A., Raupach, R., Flohr, T., et al: ‘Wavelet based noise reduction in CT-Images using correlation analysis’, IEEE Trans. Med. Imaging, 2008, 27, (12), pp. 16851703.
    29. 29)
      • 31. Wang, Z., Bovik, A., Sheikh, H., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600613.
    30. 30)
      • 26. Knaus, C., Zwicker, N.: ‘Dual-domain image denoising’. Proc. of IEEE Int. Conf. on Image Processing, Melbourne, Australia, 15–18 September 2013, pp. 440444.
    31. 31)
      • 24. Kafieh, R., Rabbani, H., Selesnick, I.: ‘Three dimensional data-driven multi scale atomic representation of optical coherence tomography’, IEEE Trans. Med. Imaging, 2015, 34, (5), pp. 10421062.
    32. 32)
      • 3. Drexler, W.: ‘Ultrahigh-resolution optical coherence tomography’, J. Biomed. Opt., 2004, 1, (9), pp. 4774.
    33. 33)
      • 42. Varnan, C., Jagan, A., Kaur, J., et al: ‘Image quality assessment techniques in spatial domain’, Int. J. Comput. Sci. Technol., 2011, 2, (3), pp. 177184.
    34. 34)
      • 37. Dataset for Denoising and Interpolation Ophthalmic SDOCT Images (human and mice). Available at http://people.duke.edu/~sf59/Fang_TMI_2013.htm.
    35. 35)
      • 19. Pizurica, A., Jovanov, L., Huysmans, B., et al: ‘Multiresolution denoising for optical coherence tomography: a review and evaluation’, Cur. Med. Imaging Rev., 2008, 4, (4), pp. 270284.
    36. 36)
      • 5. George, A., Dillenseger, J.A., Weber, A., et al: ‘Optical coherence tomography image processing’, Investigative Ophthalmol. Visual Sci., 2000, 41, (4), pp. 165173.
    37. 37)
      • 40. Reproducible Research in Computational Science: Source Code. Available at http://www.csee.wvu.edu/~xinl/source.html/, January 2015.
    38. 38)
      • 11. Sakamoto, A., Hangai, M., Yoshimura, N.: ‘Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases’, Ophthalmology, 2008, 115, (6), pp. 10711078.
    39. 39)
      • 22. Rabbani, H., Sonka, M., Abramoff, M.: ‘Optical coherence tomography noise reduction using anisotropic local bivariate Gaussian mixture prior in 3D complex wavelet domain’, Int. J. Biomed. Imaging, 2013, 417491, pp. 123.
    40. 40)
      • 9. Sudeep, P., Issac Niwas, S., Palanisamy, P., et al: ‘Enhancement and bias removal of optical coherence tomography images: an iterative approach with adaptive bilateral filtering’, Comput. Biol. Med., 2016, 71, pp. 97107.
    41. 41)
      • 12. Puvanathasan, P., Bizheva, K.: ‘Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images’, Opt. Express, 2009, 17, (2), pp. 733746.
    42. 42)
      • 36. Image Denoising Algorithms Archive: Source Code and Evaluation Data. Available at http://www5.cs.fau.de/research/software/idaa/, November 2012.
    43. 43)
      • 30. Mayer, M., Borsdorf, A., Wagner, M., et al: ‘Wavelet denoising of multiframe optical coherence tomography data’, Biomed. Opt. Express, 2012, 3, (3), pp. 572589.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0160
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading