http://iet.metastore.ingenta.com
1887

Scene-adaptive single image dehazing via opening dark channel model

Scene-adaptive single image dehazing via opening dark channel model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Many traditional dark channel prior based haze removal schemes often suffer from the colour distortion and generate halo artefacts in the remote scenes. To tackle these issues, the authors present an efficient scene-adaptive single image dehazing approach via opening dark channel model (ODCM). First, the authors detect the image depth information and separate it into close view and distant view. Then, an ODCM is proposed to optimise the whole atmospheric veil, in which the values of close view are regularised by a minimum channel image while the distant parts are estimated by an appropriate lower constant. Accordingly, the transmission map can be further optimised by guide filter and smoothed by domain transform filter. Finally, the haze degraded image can be well restored by the atmosphere scattering model. The extensive experiments have shown that the proposed image dehazing approach has significantly increased the perceptual visibility of the scene and achieved a better colour fidelity visually.

References

    1. 1)
      • 1. Tripathi, A.K., Mukhopadhyay, S.: ‘Single image fog removal using anisotropic diffusion’, IET Image Process., 2012, 6, (7), pp. 966975.
    2. 2)
      • 2. Narasimhan, S.G., Nayar, S.K.: ‘Vision and the atmosphere’, Int. J. Comput. Vis., 2002, 48, (3), pp. 233254.
    3. 3)
      • 3. Guo, F., Cai, Z.X., Xie, B., et al: ‘Review and prospect of image dehazing techniques’, J. Comput. Appl., 2010, 30, (9), pp. 24172421.
    4. 4)
      • 4. Nayar, S.K., Narasimhan, S.G.: ‘Vision in bad weather’. Proc. Int. Conf. on Computer Vision, 1999, vol. 2, pp. 820827.
    5. 5)
      • 5. Narasimhan, S.G., Nayar, S.K.: ‘Interactive (de) weathering of an image using physical models’. Proc. IEEE Workshop on Color and Photometric Methods in Computer Vision, 2003, vol. 6, pp. 17.
    6. 6)
      • 6. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: ‘Instant dehazing of images using polarization’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 325332.
    7. 7)
      • 7. Kopf, J., Neubert, B., Chen, B., et al: ‘Deep photo: Model-based photograph enhancement and viewing’, ACM Trans. Graph., 2008, 27, (5), pp. 110.
    8. 8)
      • 8. Tan, R.T.: ‘Visibility in bad weather from a single image’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2008, pp. 18.
    9. 9)
      • 9. Fattal, R.: ‘Single image dehazing’, ACM Trans. Graph., 2008, 27, (3), pp. 721729.
    10. 10)
      • 10. He, K., Sun, J., Tang, X.: ‘Single image haze removal using dark channel prior’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 23412353.
    11. 11)
      • 11. Levin, A., Lischinski, D., Weiss, Y.: ‘A closed-form solution to natural image matting’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 228242.
    12. 12)
      • 12. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
    13. 13)
      • 13. Wang, J., He, N., Zhang, L., et al: ‘Single image dehazing with a physical model and dark channel prior’, Neurocomputing, 2015, 149, pp. 718728.
    14. 14)
      • 14. Wang, G., Ren, G., Jiang, L., et al: ‘Single image dehazing algorithm based on sky region segmentation’, Inf. Technol. J., 2013, 12, (6), pp. 11681175.
    15. 15)
      • 15. Zhu, Y.B., Liu, J.M., Hao, Y.G.: ‘An single image dehazing algorithm using sky detection and segmentation’. Proc. IEEE Int. Congress on Image and Signal Processing, 2014, pp. 248252.
    16. 16)
      • 16. Narasimhan, S.G., Nayar, S.K.: ‘Contrast restoration of weather degraded images’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (6), pp. 713724.
    17. 17)
      • 17. Tarel, J.P., Hautire, N.: ‘Fast visibility restoration from a single color or gray level image’. Proc. Int. Conf. on Computer Vision, 2009, pp. 22012208.
    18. 18)
      • 18. Zhang, G., Jia, J., Hua, W., et al: ‘Robust bilayer segmentation and motion/depth estimation with a handheld camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 33, (3), pp. 603617.
    19. 19)
      • 19. Gastal, E.S., Oliveira, M.M.: ‘Domain transform for edge-aware image and video processing’, ACM Trans. Graph., 2011, 30, (4), pp. 112.
    20. 20)
      • 20. Hautiere, N., Tarel, J.P., Aubert, D., et al: ‘Blind contrast enhancement assessment by gradient ratioing at visible edges’, Image Anal. Stereol. J., 2008, 27, (2), pp. 8795.
    21. 21)
      • 21. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    22. 22)
      • 22. Economopoulos, T.L., Asvestas, P.A., Matsopoulos, G.K.: ‘Contrast enhancement of images using partitioned iterated function systems’, Image Vis. Comput., 2010, 28, (1), pp. 4554.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0138
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0138
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address