access icon free Image denoising based on sparse representation and gradient histogram

Various image priors, such as sparsity prior, non-local self-similarity prior and gradient histogram prior, have been widely used for noise removal, while preserving the image texture. However, the gradient histogram prior used for texture enhancement sometimes generates false textures in the smooth areas. In order to address these problems, the authors propose a robust algorithm combining gradient histogram with sparse representation to obtain good estimates of the sparse coding coefficients of the latent image and realising image denoising while preserving the texture. The proposed model is solved by having a balance between over-enhancement and over-smoothing of the texture in order to preserve the natural texture appearance. Experimental results demonstrate the efficiency and effectiveness of the proposed method.

Inspec keywords: image denoising; image representation; image texture

Other keywords: texture enhancement; image priors; sparse representation; image texture; natural texture appearance; image denoising; sparsity prior; latent image; gradient histogram prior; non-local self-similarity prior; sparse coding coefficients; false textures; noise removal

Subjects: Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • 11. Buades, A., Coll, B., Morel, J.-M.: ‘A non-local algorithm for image denoising’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005, CVPR 2005, 2005, vol. 2, pp. 6065.
    2. 2)
      • 33. Dong, W., Zhang, L., Lukac, R., et al: ‘Sparse representation based image interpolation with nonlocal autoregressive modeling’, IEEE Trans. Image Process., 2013, 22, (4), pp. 13821394.
    3. 3)
      • 24. Varma, M., Zisserman, A.: ‘Classifying images of materials: achieving viewpoint and illumination independence’. Computer Vision ECCV 2002, 2002, pp. 255271.
    4. 4)
      • 18. Yang, J., Wright, J., Huang, T.S., et al: ‘Image super-resolution via sparse representation’, IEEE Trans. Image Process., 2010, 19, (11), pp. 28612873.
    5. 5)
      • 29. Farsiu, S., Robinson, M.D., Elad, M., et al: ‘Fast and robust multiframe super resolution’, IEEE Trans. Image Processing, 2004, 13, (10), pp. 13271344.
    6. 6)
      • 17. Pan, J., Hu, Z., Su, Z., et al: ‘Deblurring text images via l0-regularized intensity and gradient prior’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 29012908.
    7. 7)
      • 20. Tikhonov, A.: ‘Solution of incorrectly formulated problems and the regularization method’. Soviet Math. Dokl., 1963, 5, pp. 10351038.
    8. 8)
      • 12. Burger, H.C., Schuler, C.J., Harmeling, S.: ‘Image denoising: can plain neural networks compete with BM3D?’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, 2012, pp. 23922399.
    9. 9)
      • 30. Tibshirani, R.: ‘Regression shrinkage and selection via the lasso’, J. R. Stat. Soc. B, Methodol., 1996, Jan. pp. 267288.
    10. 10)
      • 10. Zibulevsky, M., Elad, M.: ‘L1-l2 optimization in signal and image processing’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 7688.
    11. 11)
      • 23. Bappy, D., Jeon, I.: ‘Combination of hybrid median filter and total variation minimisation for medical x-ray image restoration’, IET Image Process., 2016, 57, (11), pp. 14131457.
    12. 12)
      • 19. Mairal, J., Elad, M., Sapiro, G.: ‘Sparse representation for color image restoration’, IEEE Trans. Image Process., 2008, 17, (1), pp. 5369.
    13. 13)
      • 25. Varma, M., Zisserman, A.: ‘A statistical approach to texture classification from single images’, Int. J. Comput. Vis., 2005, 62, (1–2), pp. 6181.
    14. 14)
      • 7. Dong, W., Zhang, L., Shi, G.: ‘Centralized sparse representation for image restoration’. IEEE Int. Conf. on Computer Vision (ICCV), 2011, 2011, pp. 12591266.
    15. 15)
      • 22. Lu, Z., Li, H., Li, W.: ‘A bayesian adaptive weighted total generalized variation model for image restoration’. IEEE Int. Conf. on Image Processing (ICIP), 2015, 2015, pp. 492496.
    16. 16)
      • 3. Dong, W., Zhang, L., Shi, G., et al: ‘Nonlocally centralized sparse representation for image restoration’, IEEE Trans. Image Process., 2013, 22, (4), pp. 16201630.
    17. 17)
      • 13. Gu, S., Zhang, L., Zuo, W., et al: ‘Weighted nuclear norm minimization with application to image denoising’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 28622869.
    18. 18)
      • 35. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Processing, 2004, 13, (4), pp. 600612.
    19. 19)
      • 2. McGaffin, M.G., Fessler, J. A., et al: ‘Edge-preserving image denoising via group coordinate descent on the GPU’, IEEE Trans. Image Process., 2015, 24, (4), pp. 12731281.
    20. 20)
      • 34. Attouch, H., Bolte, J., Redont, P., et al: ‘Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-ojasiewicz inequality’, Math. Oper. Res., 2010, 35, (2), pp. 438457.
    21. 21)
      • 1. Shao, L., Yan, R., Li, X., et al: ‘From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms’, IEEE Trans. Cybern., 2014, 44, (7), pp. 10011013.
    22. 22)
      • 9. Daubechies, I., Defrise, M., De Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math., 2004, 57, (11), pp. 14131457.
    23. 23)
      • 4. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-d transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    24. 24)
      • 21. Wu, L., Liu, Y., Liu, N., et al: ‘High-resolution images based on directional fusion of gradient’, Comput. Vis. Med., 2016, 2, (1), pp. 3143.
    25. 25)
      • 16. Zhang, M., Desrosiers, C., Zhang, C., et al: ‘Effective document image deblurring via gradient histogram preservation’. IEEE Int. Conf. on Image Processing (ICIP), 2015, 2015, pp. 779783.
    26. 26)
      • 15. Zhang, M., Desrosiers, C., Qu, Q., et al: ‘Medical image super-resolution with non-local embedding sparse representation and improved IBP’. 2016 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 888892.
    27. 27)
      • 32. Lin, Z., Liu, R., Su, Z.: ‘Linearized alternating direction method with adaptive penalty for lowrank representation’. NIPS, 2011, vol. 2, p. 6.
    28. 28)
      • 28. Zuo, W., Zhang, L., Song, C., et al: ‘Gradient histogram estimation and preservation for texture enhanced image denoising’, IEEE Trans. Image Process., 2014, 23, (6), pp. 24592472.
    29. 29)
      • 5. Mairal, J., Bach, F., Ponce, J., et al: ‘Non-local sparse models for image restoration’. IEEE 12th Int. Conf. on Computer Vision, 2009, 2009, pp. 22722279.
    30. 30)
      • 6. Wang, S., Zhang, L., Liang, Y.: ‘Nonlocal spectral prior model for low-level vision’. Computer Vision – ACCV 2012, 2013, pp. 231244.
    31. 31)
      • 8. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    32. 32)
      • 26. Katkovnik, V., Foi, A., Egiazarian, K., et al: ‘From local kernel to nonlocal multiple-model image denoising’, Int. J. Comput. Vis., 2010, 86, (1), pp. 132.
    33. 33)
      • 27. Zoran, D., Weiss, Y.: ‘From learning models of natural image patches to whole image restoration’. IEEE Int. Conf. on Computer Vision (ICCV), 2011, 2011, pp. 479486.
    34. 34)
      • 14. Zuo, W., Zhang, L., Song, C., et al: ‘Texture enhanced image denoising via gradient histogram preservation’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013, 2013, pp. 12031210.
    35. 35)
      • 31. Tao, M., Yuan, X.: ‘Recovering low-rank and sparse components of matrices from incomplete and noisy observations’, SIAM J. Optim., 2011, 21, (1), pp. 5781.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2016.0098
Loading

Related content

content/journals/10.1049/iet-ipr.2016.0098
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading