Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Simultaneous enhancement and noise reduction of a single low-light image

Images obtained under low-light conditions tend to have the characteristics of low-grey levels, high-noise levels, and indistinguishable details. Image degradation not only affects the recognition of images, but also influences the performance of the computer vision system. The low-light image enhancement algorithm based on the dark channel prior de-hazing technique can enhance the contrast of images effectively and can highlight the details of images. However, the dark channel prior de-hazing technique ignores the effects of noise, which leads to significant noise amplification after the enhancement process. In this study, a de-hazing-based simultaneous enhancement and noise reduction algorithm of are proposed by analysing the essence of the dark channel prior de-hazing technique and bilateral filter. First, the authors estimate the values of the initial parameters of the hazy image model by de-hazing technique. Then, they correct the parameters of the hazy image model alternately with the iterative joint bilateral filter. Experimental results indicate that the proposed algorithm can simultaneously enhance the low-light images and reduce noise effectively. The proposed algorithm could also perform quite well compared with the current common image enhancement and noise reduction algorithms in terms of the subjective visual effects and objective quality assessments.

References

    1. 1)
      • 39. Yang, Q., Tan, K.H., Ahuja, N.: ‘Real-time O (1) bilateral filtering’. Proc. of the 21st IEEE Int. Conf. on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009, pp. 557564.
    2. 2)
      • 2. Zong, X., Laine, A.F., Geiser, E.A.: ‘Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing’, IEEE Trans. Med. Imaging, 1998, 17, (4), pp. 532540.
    3. 3)
      • 36. Fotiadou, K., Tsagkatakis, G., Tsakalides, P.: ‘Low light image enhancement via sparse representations’ (Springer International Publishing, Image Analysis and Recognition, 2014), pp. 8493.
    4. 4)
      • 9. Rahman, Z., Jobson, D.J., Woodell, G.: ‘Multi-scale Retinex for color image enhancement’. Proc. of the Third IEEE Int. Conf. on Image Processing, Lausanne, Switzerland, 16–19 September 1996, vol. 3, pp. 10031006.
    5. 5)
      • 11. Zhang, X., Shen, P., Luo, L., et al: ‘Enhancement and noise reduction of very low light level images’. Proc. of the 21st IEEE Int. Conf. on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012, pp. 20342037.
    6. 6)
      • 28. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    7. 7)
      • 32. Wei, W., Yang, X.L., Zhou, B., et al: ‘Combined energy minimization for image reconstruction from few views’, Math. Prob. Eng., 2012, (8), pp.10941099.
    8. 8)
      • 15. He, K., Sun, J., Tang, X.: ‘Single image haze removal using dark channel prior’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 23412353.
    9. 9)
      • 31. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Proc. of the Sixth IEEE Int. Conf. on Computer Vision, Bombay, 04–07 January 1998, pp. 839846.
    10. 10)
      • 38. Zong, X., Laine, A.F., Geiser, E.A.: ‘Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing’, IEEE Trans. Med. Imaging, 2008, 17, (4), pp. 532540.
    11. 11)
      • 21. Wei, W., Qiang, Y., Zhang, J.: ‘A bijection between lattice-valued filters and lattice-valued congruences in residuated lattices’, Math. Prob. Eng., 2013, (2), pp.14371450.
    12. 12)
      • 3. Loza, A., Bull, D.R., Hill, P.R., et al: ‘Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients’, Digit. Signal Process., 2013, 23, (6), pp. 18561866.
    13. 13)
      • 14. Petschnigg, G., Szeliski, R., Agrawala, M., et al: ‘Digital photography with flash and no-flash image pairs’, ACM Trans. Graph. (TOG), 2004, 23, (3), pp. 664672.
    14. 14)
      • 18. Guo, F., Cai, Z., Xie, B., et al: ‘Automatic image haze removal based on luminance component’. Proc. of the Sixth IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing, Chengdu, China, 23–25 September 2010, pp. 14.
    15. 15)
      • 17. Takeda, H., Farsiu, S., Milanfar, P.: ‘Deblurring using regularized locally adaptive kernel regression’, IEEE Trans. Image Process., 2008, 17, (4), pp. 550563.
    16. 16)
      • 1. Pizer, S.M., Amburn, E.P., Austin, J.D., et al: ‘Adaptive histogram equalization and its variations’, Comput. Vision Graph. Image Process., 1987, 39, (3), pp. 355368.
    17. 17)
      • 30. Verma, C.S., Ju, M.: ‘High dynamic range dataset’. Available at http://www.pages.cs.wisc.edu/~csverma/CS766_09/HDRI/DataSet/HDRImageSet.html, accessed 20 April 2015.
    18. 18)
      • 19. Shashua, A., Riklin-Raviv, T.: ‘The quotient image: class-based re-rendering and recognition with varying illuminations’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 129139.
    19. 19)
      • 27. Lan, X., Zhang, L., Shen, H., et al: ‘Single image haze removal considering sensor blur and noise’, EURASIP J. Adv. Signal Process., 2013, (1), pp. 113.
    20. 20)
      • 34. Wei, W., Yang, X.L., Shen, P.Y., et al: ‘Holes detection in anisotropic sensornets: topological methods’, Int. J. Distrib. Sens. Netw., vol. 2012, Article ID 135054, 9 pages, 2012. doi:10.1155/2012/135054.
    21. 21)
      • 24. Zhu, X., Milanfar, P.: ‘Automatic parameter selection for denoising algorithms using a no-reference measure of image content’, IEEE Trans. Image Process., 2010, 19, (12), pp. 31163132.
    22. 22)
      • 20. Liu, Z., Shan, Y., Zhang, Z.: ‘Expressive expression mapping with ratio images’. Proc. of the 28th Annual Conf. on Computer Graphics and Interactive Techniques, New York, USA, 2001, pp. 271276.
    23. 23)
      • 8. Jobson, D.J., Woodell, G.A.: ‘Properties of a center/surround Retinex, Part two: surround design’. NASA Technical Memorandum, 1995.
    24. 24)
      • 12. Malm, H., Oskarsson, M., Warrant, E., et al: ‘Adaptive enhancement and noise reduction in very low light-level video’. Proc. of the 11th IEEE Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007, pp. 18.
    25. 25)
      • 10. Dong, X., Wang, G., Pang, Y., et al: ‘Fast efficient algorithm for enhancement of low lighting video’. Proc. of the IEEE Int. Conf. on Multimedia and Expo, Barcelona, Spain, 11–15 July 2011, pp. 16.
    26. 26)
      • 26. Matlin, E., Milanfar, P.: ‘Removal of haze and noise from a single image’. Proc. of the SPIE Conf. on Computational Imaging, 09 February 2012.
    27. 27)
      • 35. Fu, H., Ma, H., Wu, S.: ‘Night removal by color estimation and sparse representation’. Proc. of the 21st IEEE Int. Conf. on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012, pp. 36563659.
    28. 28)
      • 6. Rahman, Z.: ‘Properties of a center/surround Retinex. Part one: signal processing design’. NASA Contractor Report, 1995.
    29. 29)
      • 33. Downie, T.R., Silverman, B.W.: ‘The discrete multiple wavelet transform and thresholding methods’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 25582561.
    30. 30)
      • 25. Yuan, Q., Zhang, L., Shen, H.: ‘Multiframe super-resolution employing a spatially weighted total variation model’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (3), pp. 379392.
    31. 31)
      • 4. Land, E.H.: ‘Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image’. Proc. of the National Academy of Sciences, USA, August 1983, vol. 80, pp. 51635169.
    32. 32)
      • 16. Takeda, H., Farsiu, S., Milanfar, P.: ‘Kernel regression for image processing and reconstruction’, IEEE Trans. Image Process., 2007, 16, (2), pp. 349366.
    33. 33)
      • 5. Jobson, D.J., Rahman, Z., Woodell, G.: ‘Properties and performance of a center/surround Retinex’, IEEE Trans. Image Process., 1997, 6, (3), pp. 451462.
    34. 34)
      • 13. Wei, W., Xu, Q., Wang, L., et al: ‘GI/Geom/1 queue based on communication model for mesh networks’, Int. J. Commun. Syst., 2014, 27, (11), pp. 30133029.
    35. 35)
      • 29. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    36. 36)
      • 7. Wei, W., Yong, Q.: ‘Information potential fields navigation in wireless ad-hoc sensor networks’, Sensors, 2011, 11, (5), pp. 47944807.
    37. 37)
      • 23. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    38. 38)
      • 22. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans.Graph., 2008, 27, (3), pp. 1519.
    39. 39)
      • 37. Funt, B., Ciurea, F., McCann, J.: ‘Retinex in MATLAB’, J. Electron. Imaging, 2004, 13, (1), pp. 4857.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0844
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0844
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address