http://iet.metastore.ingenta.com
1887

Analysis and design of coded apertures for defocus deblurring based on imaging system properties and optical features

Analysis and design of coded apertures for defocus deblurring based on imaging system properties and optical features

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As the physical size of single pixels in digital cameras grows smaller, the captured images are increasingly affected by defocused blurring and consequently valuable details are lost. Different aperture patterns have already been proposed to mitigate this problem based on presumed conditions, which maybe violated in practise. Sensor characteristics and current photometric scene properties have been largely ignored in the design of aperture patterns in the literature. In this study, a number of perceptually optimised coded apertures are introduced for defocused deblurring. These apertures are specifically designed considering illumination conditions, sensor specifications and human visual system characteristics. The designed patterns are compared with circular apertures of equal throughput and pinhole aperture. Experiments show signal-to-noise ratio (SNR) gains of up to 0.35 and 2 dB over circular and pinhole apertures, respectively. To study the trade-off between diffraction and deblurring gains, the proposed binary masks are enhanced by smoothing and morphological operations, which can yield non-binary and rounded binary patterns. The results of the authors’ study show that rounded binary patterns improve diffraction behaviour while maintaining the desired SNR level.

References

    1. 1)
      • A. Levin , R. Fergus , F. Durand .
        1. Levin, A., Fergus, R., Durand, F., et al: ‘Image and depth from a conventional camera with a coded aperture’, ACM Trans. Graph., 2007, 26, (3), p. 70.
        . ACM Trans. Graph. , 3 , 70
    2. 2)
      • A. Sellent , P. Favaro .
        2. Sellent, A., Favaro, P.: ‘Which side of the focal plane are you on?’. Proc. IEEE Int. Conf. on Computational Photography (ICCP), Santa Clara, CA, May 2014, pp. 18.
        . Proc. IEEE Int. Conf. on Computational Photography (ICCP) , 1 - 8
    3. 3)
      • A. Sellent , P. Favaro .
        3. Sellent, A., Favaro, P.: ‘Optimized aperture shapes for depth estimation’, Pattern Recognit. Lett., 2014, 40, pp. 96103.
        . Pattern Recognit. Lett. , 96 - 103
    4. 4)
      • J. Lin , X. Lin , X. Ji .
        4. Lin, J., Lin, X., Ji, X., et al: ‘Separable coded aperture for depth from a single image’, IEEE Signal Process. Lett., 2014, 21, (12), pp. 14711475.
        . IEEE Signal Process. Lett. , 12 , 1471 - 1475
    5. 5)
      • A. Veeraraghavan , R. Raskar , A. Agrawal .
        5. Veeraraghavan, A., Raskar, R., Agrawal, A., et al: ‘Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing’, ACM Trans. Graph., 2007, 26, (3), p. 69.
        . ACM Trans. Graph. , 3 , 69
    6. 6)
      • C. Zhou , S. Nayar .
        6. Zhou, C., Nayar, S.: ‘What are good apertures for defocus deblurring?’. Proc. IEEE Int. Conf. on Computational Photography (ICCP), San Francisco, CA, April 2009, pp. 18.
        . Proc. IEEE Int. Conf. on Computational Photography (ICCP) , 1 - 8
    7. 7)
      • B. Masia , L. Presa , A. Corrales .
        7. Masia, B., Presa, L., Corrales, A., et al: ‘Perceptually optimized coded apertures for defocus deblurring’, Comput. Graph. Forum, 2012, 31, (6), pp. 18671879.
        . Comput. Graph. Forum , 6 , 1867 - 1879
    8. 8)
      • O. Cossairt , M. Gupta , S.K. Nayar .
        8. Cossairt, O., Gupta, M., Nayar, S.K.: ‘When does computational imaging improve performance?’, IEEE Trans. Image Process., 2013, 22, (2), pp. 447458.
        . IEEE Trans. Image Process. , 2 , 447 - 458
    9. 9)
      • K. Mitra , O. Cossairt , A. Veeraraghavan .
        9. Mitra, K., Cossairt, O., Veeraraghavan, A.: ‘A framework for analysis of computational imaging systems: role of signal prior, sensor noise and multiplexing’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (10), pp. 19091921.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1909 - 1921
    10. 10)
      • A. Agrawal , R. Raskar .
        10. Agrawal, A., Raskar, R.: ‘Optimal single image capture for motion deblurring’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Miami, FL, June 2009, pp. 25602567.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 2560 - 2567
    11. 11)
      • 11. ‘ANDOR-Technology. Digital Camera Fundamentals’. Available at http://www.lvps83-169-23-21.dedicated.hosteurope.de/files/downloads/andor/en/cc_digitalcameras_deen01.pdf, accessed January 2015.
        .
    12. 12)
      • J.E. Farrell , P.B. Catrysse , B.A. Wandell .
        12. Farrell, J.E., Catrysse, P.B., Wandell, B.A.: ‘Digital camera simulation’, Appl. Opt., 2012, 51, (4), pp. A80A90.
        . Appl. Opt. , 4 , A80 - A90
    13. 13)
      • C. Liu , R. Szeliski , S.B. Kanget .
        13. Liu, C., Szeliski, R., Kanget, S.B., et al: ‘Automatic estimation and removal of noise from a single image’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (2), pp. 299314.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 299 - 314
    14. 14)
      • M. Martinello .
        14. Martinello, M.: ‘Coded aperture imaging’. PhD thesis, Heriot-Watt University, 2012.
        .
    15. 15)
      • O. Cossairt .
        15. Cossairt, O.: ‘Tradeoffs and limits in computational imaging’. PhD thesis, Columbia University, 2011.
        .
    16. 16)
      • W. Lin , C.-C.J. Kuo .
        16. Lin, W., Kuo, C.-C.J.: ‘Perceptual visual quality metrics: a survey’, J. Vis. Commun. Image Represent., 2011, 22, (4), pp. 297312.
        . J. Vis. Commun. Image Represent. , 4 , 297 - 312
    17. 17)
      • J.L. Mannos , D.J. Sakrison .
        17. Mannos, J.L., Sakrison, D.J.: ‘The effects of a visual fidelity criterion of the encoding of images’, IEEE Trans. Inf. Theory, 1974, 20, (4), pp. 525536.
        . IEEE Trans. Inf. Theory , 4 , 525 - 536
    18. 18)
      • Y. Weiss , W.T. Freeman .
        18. Weiss, Y., Freeman, W.T.: ‘What makes a good model of natural images?’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, June 2007, pp. 18.
        . Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 1 - 8
    19. 19)
      • Y. Gao .
        20. Gao, Y.: ‘Population size and sampling complexity in genetic algorithms’. Proc. of the Bird of a Feather Workshops (GECCO03), Chicago, IL, July 2003, pp. 178181.
        . Proc. of the Bird of a Feather Workshops (GECCO03) , 178 - 181
    20. 20)
      • C. Moon , J. Kim , G. Choiet .
        21. Moon, C., Kim, J., Choiet, G., et al: ‘An efficient genetic algorithm for the traveling salesman problem with precedence constraints’, Eur. J. Oper. Res., 2002, 140, (3), pp. 606617.
        . Eur. J. Oper. Res. , 3 , 606 - 617
    21. 21)
      • E. Hecht . (2002)
        22. Hecht, E.: ‘Optics’ (Addison Wesley Press, San Francisco, CA, 2002, 4th edn.).
        .
    22. 22)
      • Z. Wang , E.P. Simoncelli , A.C. Bovik .
        23. Wang, Z., Simoncelli, E.P., Bovik, A.C.: ‘Multi-scale structural similarity for image quality assessment’. Proc. IEEE Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, November 2003, pp. 13981402.
        . Proc. IEEE Asilomar Conf. on Signals, Systems and Computers , 1398 - 1402
    23. 23)
      • H.R. Sheikh , A.C. Bovik .
        24. Sheikh, H.R., Bovik, A.C.: ‘Image information and visual quality’, IEEE Trans. Image Process., 2006, 15, (2), pp. 430444.
        . IEEE Trans. Image Process. , 2 , 430 - 444
    24. 24)
      • H.R. Sheikh , M.F. Sabir , A.C. Bovik .
        25. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (11), pp. 34403451.
        . IEEE Trans. Image Process. , 11 , 3440 - 3451
    25. 25)
      • A. Lahoulou , A. Bouridane , E. Viennet .
        26. Lahoulou, A., Bouridane, A., Viennet, E., et al: ‘Full-reference image quality metrics performance evaluation over image quality databases’, Arab. J. Sci. Eng., 2013, 38, (9), pp. 23272356.
        . Arab. J. Sci. Eng. , 9 , 2327 - 2356
    26. 26)
      • N. Ponomarenko , V. Lukin , A. Zelensky .
        27. Ponomarenko, N., Lukin, V., Zelensky, A., et al: ‘TID2008-A database for evaluation of full-reference visual quality assessment metrics’, Adv. Mod. Radioelectron., 2009, 10, (4), pp. 3045.
        . Adv. Mod. Radioelectron. , 4 , 30 - 45
    27. 27)
      • K. Mitra , O. Cossairt , A. Veeraraghavan .
        28. Mitra, K., Cossairt, O., Veeraraghavan, A.: ‘To denoise or deblur: parameter optimization for imaging systems’. Proc. Int. Society for Optics and Photonics, IS&T/SPIE Electronic Imaging, San Francisco, CA, February 2014, p. 90230G.
        . Proc. Int. Society for Optics and Photonics, IS&T/SPIE Electronic Imaging , 90230G
    28. 28)
      • C. Zhou , S. Lin , S.K. Nayar .
        29. Zhou, C., Lin, S., Nayar, S.K.: ‘Coded aperture pairs for depth from defocus and defocus deblurring’, Int. J. Comput. Vision, 2011, 93, (1), pp. 5372.
        . Int. J. Comput. Vision , 1 , 53 - 72
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0831
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0831
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address