http://iet.metastore.ingenta.com
1887

Context-based prediction filtering of impulse noise images

Context-based prediction filtering of impulse noise images

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new image denoising method for impulse noise in greyscale images using a context-based prediction scheme is presented. The algorithm replaces the noisy pixel with the value occurring with the highest frequency, in the same context as the replaceable pixel. Since it is a context-based technique, it preserves the details in the filtered images better than other methods. In the aim of validation, the authors have compared the proposed method with several existing denoising methods, many of them being outperformed by the proposed filter.

References

    1. 1)
    2. 2)
      • 2. Bhatia, A., Kulkarni, R.K.: ‘Removal of high density salt-and-pepper noise through improved adaptive median filter’. Int. Conf. on Computer Science and Information Technology, Bangalore, May 2012, pp. 197200.
    3. 3)
      • 3. Lal, S., Kumar, S., Chandra, M.: ‘Removal of high density salt & pepper noise through super mean filter for natural images’, Int. J. Comput. Sci. Issues, 2012, 9, (3), pp. 303309.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 11. Duan, D., Mo, Q., Wan, Y., et al: ‘A detail preserving filter for impulse noise removal’. Int. Conf. on Computer Application and System Modeling, Taiyuan, China, October 2010, pp. 265268.
    12. 12)
      • 12. Jassim, F.A.: ‘Kriging interpolation filter to reduce high density salt and pepper noise’, World Comput. Sci. Inf. Technol. J., 2013, 3, (1), pp. 814.
    13. 13)
    14. 14)
      • 14. Lin, T.C.: ‘SVM-based filter using evidence theory and neural network for image denoising’, J. Softw. Eng. Appl., 2013, 6, (3B), pp. 106110.
    15. 15)
      • 15. Deng, C., Liu, H.M., Wang, Z.H.: ‘Applying an improved neural network to impulse noise removal’. Int. Conf. on Wavelet Analysis and Pattern Recognition, Qingdao, China, July 2010, pp. 207210.
    16. 16)
      • 16. Aizenberg, I., Wallace, G.: ‘Intelligent detection of impulse noise using multilayer neural network with multi-valued neurons’. Image Processing: Algorithms and Systems X and Parallel Processing for Imaging Applications II, February 2012, p. 82950S.
    17. 17)
      • 17. Soares, P.L.B., Silva, J.P.: ‘Neural networks applied for impulse noise reduction from digital images’, INFOCOMP J. Comput. Sci., 2012, 11, (3–4), pp. 714.
    18. 18)
    19. 19)
      • 19. Mishra, S.K., Panda, G., Meher, S.: ‘Chebyshev functional link artificial neural networks for denosing of image corrupted by salt and pepper noise’, ACEEE Int. J. Signal Image Process., 2010, 1, (1), pp. 4246.
    20. 20)
      • 20. Agostinelli, F., Anderson, M.R., Lee, H.: ‘Adaptive multi-column deep neural networks with application to robust image denosing’. Advances in Neural Information Processing Systems 26, Lake Tahoe, NV, USA, December 2013, pp. 14931501.
    21. 21)
      • 21. Xie, J., Xu, L., Chen, E.: ‘Image denoising and inpainting with deep neural networks’. Advances in Neural Information Processing Systems 25, Lake Tahoe, NV, USA, December 2012, pp. 350358.
    22. 22)
    23. 23)
      • 23. Surrah, H.A.: ‘Impulse noise removal from highly corrupted images using new hybrid technique based on neural networks and switching filters’, J. Global Res. Comput. Sci., 2014, 5, (3), pp. 17.
    24. 24)
      • 24. Chen, S., Shi, W., Zhang, W.: ‘An efficient universal noise removal algorithm combining spatial gradient and impulse statistic’, Math. Probl. Eng., 2013, 2013, p. 480274.
    25. 25)
    26. 26)
      • 26. Buades, A., Coll, B., Morel, J.-M.: ‘A non-local algorithm for image denosing’. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp. 6065.
    27. 27)
      • 27. Estrada, F., Fleet, D., Jepson, A.: ‘Stochastic image denoising’. British Machine Vision Conf., London, September 2009, p. 117.
    28. 28)
    29. 29)
      • 29. Jääskinen, V., Parkkinen, V., Cheng, L., et al: ‘Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model’, Stat. Appl. Genet. Mol. Biol., 2014, 13, (1), pp. 105121.
    30. 30)
      • 30. Marques, A., Belo, O.: ‘Discovering student web usage profiles using Markov chains’, Electron. J. e-Learn., 2011, 9, (1), pp. 6374.
    31. 31)
      • 31. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: ‘Next place prediction using mobility Markov chains’. Proc. of the First Workshop on Measurement, Privacy, and Mobility, New York, USA, April 2012, p. 3.
    32. 32)
      • 32. Cao, G., Nie, J.-Y., Bai, J.: ‘Using Markov chains to exploit word relationships in information retrieval’. Eighth Conf. on Large-Scale Semantic Access to Content, Pittsburgh, PA, USA, 2007, pp. 388402.
    33. 33)
      • 33. Mushtaq, A., Lee, C.-H.: ‘An integrated approach to feature compensation combining particle filters and hidden Markov model for robust speech recognition’. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Kyoto, Japan, March 2012, pp. 47574760.
    34. 34)
      • 34. Gellert, A., Florea, A., Vintan, M., et al: ‘Unbiased branches: an open problem’. Twelfth Asia-Pacific Computer Systems Architecture Conf., Seoul, Korea, August 2007, pp. 1627.
    35. 35)
    36. 36)
      • 36. Gellert, A., Florea, A.: ‘Web page prediction enhanced with confidence mechanism’, J. Web Eng., 2014, 13, (5–6), pp. 507524.
    37. 37)
      • 37. Majumdar, A., Ward, R.K.: ‘Synthesis and analysis prior algorithms for joint-sparse recovery’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, March 2012, pp. 34213424.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0702
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0702
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address