Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule

The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.

References

    1. 1)
      • 20. Ramteke, N.S., Jain, S.V.: ‘ABCD rule based automatic computer-aided skin cancer detection using Matlab®’, Int. J. Comput. Technol. Appl., 2013, 4, (4), p. 691.
    2. 2)
    3. 3)
      • 49. Argenziano, G., Soyer, H.P., De Giorgio, V., et al: ‘Interactive atlas of dermoscopy (book and CD-ROM)’ (EDRA Medical Publishing and New Media, 2000).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 40. Risson, V.: ‘Application De La Morphologie Mathématique À L'analyse Des Conditions D'éclairage Des Images Couleur’ (École Nationale Supérieure des Mines de Paris, 2001).
    11. 11)
      • 44. Grammatikopoulos, G., Hatzigaidas, A., Papastergiou, A., et al: ‘Automated malignant melanoma detection using Matlab’. Proc. Fifth Int. Conf. on Data Networks, Communications and Computers, Bucharest, Romania, 2006.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 46. Ng, V.T., Lee, T.K.: ‘Measuring border irregularities of skin lesions using fractal dimensions’. Photonics China ‘96, Int. Society for Optics and Photonics, 1996.
    16. 16)
      • 41. Farrugia, J.P.: ‘Modèles De Vision Et Synthèse D'images’ (Ecole Nationale Supérieure des Mines de Saint-Etienne; Université Jean Monnet-Saint-Etienne, 2002).
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 19. Smaoui, N., Bessassi, S.: ‘A developed system for melanoma diagnosis’, Int. J. Comput. Vis. Signal Process., 2013, 3, (1), pp. 1017.
    21. 21)
    22. 22)
    23. 23)
      • 30. Wang, H., Chen, X., Moss, R.H., et al: ‘Watershed segmentation of dermoscopy images using a watershed technique’, Skin Res. Technol., 2010, 16, (3), pp. 378384.
    24. 24)
    25. 25)
      • 21. Jaworek-Korjakowska, J.: Automatic detection of melanomas: an application based on the Abcd criteria', Inf. Technol. Biomed., (Springer-Berlin, Heidelberg, 2012), pp. 67–76.
    26. 26)
      • 43. Seidenari, S., Pellacani, G., Grana, C.: ‘Early detection of melanoma by image analysis’, Bioeng. Skin, Skin Imaging Anal., 2006, 31, pp. 305311.
    27. 27)
    28. 28)
      • 33. Lee, C.P.: ‘Robust image segmentation using active contours: level set approaches’. PhD thesis, North Carolina State University, 2005.
    29. 29)
      • 29. Mokrani, K., Kasmi, R., Arour, M.: ‘Technique d’élimination des poils pour les images dermoscopiques’. National Conf. on Electronics and New Technologies, 2015.
    30. 30)
    31. 31)
      • 15. Di Leo, G., Paolillo, A., Sommella, P., et al: ‘Automatic diagnosis of melanoma: a software system based on the 7-point check-list’. 2010 43rd Hawaii Int. Conf. on System Sciences (HICSS), 2010.
    32. 32)
    33. 33)
    34. 34)
      • 18. Piccolo, D., Crisman, G., Schoinas, S., et al: ‘Computer-automated ABCD versus dermatologists with different degrees of experience in dermoscopy’, Eur. J. Dermatol., 2014, 24, (4), pp. 477481.
    35. 35)
      • 36. Sethian, J.A.: ‘Level set methods and fast marching methods’, J. Comput. Inf. Technol., 2003, 11, (1), pp. 12.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 9. Menzies, S.W., Crotty, K.A., Ingvar, C., et al: ‘An atlas of surface microscopy of pigmented skin lesions: dermoscopy’ (McGraw-Hill Roseville, 2003).
    40. 40)
    41. 41)
    42. 42)
      • 13. Ramezani, M., Karimian, A., Moallem, P.: ‘Automatic detection of malignant melanoma using macroscopic images’, J. Med. Signals Sens., 2014, 4, (4), p. 281.
    43. 43)
    44. 44)
      • 4. Stolz, W., Riemann, A., Cognetta, A., et al: ‘ABCD rule of dermatoscopy-a new practical method for early recognition of malignant-melanoma’, Eur. J. Dermatol., 1994, 4, (7), pp. 521527.
    45. 45)
      • 25. Liu, Z.Q., Cai, J.H., Buse, R.: ‘Handwriting recognition: soft computing and probabilistic approaches’ (Springer, 2012).
    46. 46)
      • 37. Kasmi, R., et al: ‘Biologically inspired skin lesion segmentation using a geodesic active contour technique,Skin Res. Technol., 2015, doi: 10.1111/srt.12252.
    47. 47)
    48. 48)
      • 42. Sharma, G., Bala, R.: ‘Digital colour imaging handbook’ (CRC Press, 2002).
    49. 49)
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2015.0385
Loading

Related content

content/journals/10.1049/iet-ipr.2015.0385
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address