access icon free Deinterlacing algorithm using gradient-guided interpolation and weighted average of directional estimation

This study presents a novel intra-field deinterlacing algorithm using gradient-guided interpolation (GGI) and weighted average of directional estimation (WADE). In this method, the authors classify each missing pixel into two categories according to different local region gradient features. After the classification of the local region, one of the two different interpolation methods is chosen for the corresponding region. The two interpolation methods are GGI method and the interpolation method using WADE. The average weighted method is used for smooth or texture regions because of its high interpolation performance by adopting the directional detail information among the neighbouring pixels. On the other hand, the GGI method is used for complex regions with strong or weak edges since it has high edge-preserving ability because of considering not only the similarity of pixel intensities, but also the pixel gradient features. The WADE and GGI methods are the main contributions of this study. Compared with the traditional deinterlacing methods, the proposed method improves both the objective and subjective qualities of the interpolated images. In addition, the proposed method possesses a very low computational burden compared with most intra-field deinterlacing methods.

Inspec keywords: image texture; interpolation

Other keywords: GGI method; WADE; interpolated images; local region gradient features; pixel gradient features; intrafield deinterlacing algorithm; weighted average of directional estimation; high edge-preserving ability; gradient-guided interpolation

Subjects: Interpolation and function approximation (numerical analysis); Optical, image and video signal processing; Computer vision and image processing techniques; Interpolation and function approximation (numerical analysis)

References

    1. 1)
    2. 2)
      • 4. Doyle, T.: ‘Interlaced to sequential conversion for EDTV applications’. Proc. Second Int. Workshop Signal Processing of HDTV, 1998, pp. 412430.
    3. 3)
      • 1. Jack, K.: ‘Video demystified—a handbook for the digital engineer’ (Elsevier, 2005).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 25. Wang, Q., Ward, R.: ‘A new edge-directed image expansion scheme’. IEEE Int. Conf. on Image Processing (ICIP), 2001, vol. 3, pp. 899902.
    9. 9)
      • 12. Park, S.J., Jeon, G., Jeong, J.: ‘Computation-aware algorithm selection approach for interlaced-to-progressive conversion’, Opt. Eng., 2010, 49, (5), article id: 057005.
    10. 10)
      • 13. Park, S.J., Hong, S.M., Jeong, J.: ‘Deinterlacing algorithm using direction-oriented inverse-free wiener filtering’, Opt. Eng., 2011, 50, (6), article id: 067014.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 26. ‘Keyboard’, http://morguefile.com/archive/, Accessed 27 August 2014.
    16. 16)
      • 27. ‘24 Kodak images’, http://r0k.us/graphics/kodak, Accessed 20 May 2013.
    17. 17)
    18. 18)
    19. 19)
      • 14. Chen, X., Jeon, G., Jeong, J.: ‘Filter switching interpolation method for deinterlacing’, Opt. Eng., 2012, 51, (10), article id: 107402.
    20. 20)
    21. 21)
    22. 22)
      • 2. Bellars, E.B., Haan, G.D.: ‘Deinterlacing: a key technology for scan rate conversion’ (Elsevier, 2000).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 9. Yoo, H., Jeong, J.: ‘Direction-oriented interpolation and its application to de-interlacing’, IEEE Trans. Consum. Electron., 2002, 48, (4), pp. 954962.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2014.0183
Loading

Related content

content/journals/10.1049/iet-ipr.2014.0183
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading