Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient image sharpening and denoising using adaptive guided image filtering

Enhancing the sharpness and reducing the noise of blurred, noisy images are crucial functions of image processing. Widely used unsharp masking filter-based approaches suffer from halo-artefacts and/or noise amplification, while noise- and halo-free adaptive bilateral filtering (ABF) is computationally intractable. In this study, the authors present an efficient sharpening algorithm inspired by guided image filtering (GF). The author's proposed adaptive GF (AGF) integrates the shift-variant technique, a part of ABF, into a guided filter to render crisp and sharpened outputs. Experiments showed the superiority of their proposed algorithm to existing algorithms. The proposed AGF sharply enhances edges and textures without causing halo-artefacts or noise amplification, and it is efficiently implemented using a fast linear-time algorithm.

References

    1. 1)
      • 29. Larson, E.C., Chandler, D.M.: ‘Most apparent distortion: full-reference image quality assessment and the role of strategy’, J. Electron. Imaging, 2010, 19, (1), pp. 011006-1011006-21.
    2. 2)
      • 12. Porikli, F.: ‘Constant time O(1) bilateral filtering’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2008, pp. 18.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 25. Narvekar, N.D., Karam, L.J.: ‘CPBD sharpness metric software’, http://www.ivulab.asu.edu/Quality/CPBD.
    9. 9)
    10. 10)
    11. 11)
      • 27. Peng, H., Rao, R.: ‘Bilateral kernel parameter optimization by risk minimization’. Proc. IEEE Int. Conf. Image Process. (ICIP), 2010, pp. 32933296.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 16. Bilcu, R.C., Vehvilainen, M.: ‘Constrained unsharp masking for image enhancement’. Proc. Intl. Conf. on Image and Signal Processing, 2008, 5099, pp. 1019.
    17. 17)
      • 13. Yang, Q., Tan, K.H., Ahuja, N.: ‘Real-time O(1) bilateral filtering’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2009, pp. 557564.
    18. 18)
    19. 19)
    20. 20)
      • 22. Levin, A., Lischinski, D., Weiss, Y.: ‘A closed form solution to natural image matting’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2006, pp. 6168.
    21. 21)
      • 28. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: ‘LIVE image quality assessment database release 2’, http://www.live.ece.utexas.edu/research/quality.
    22. 22)
      • 1. Bovik, A.: ‘Handbook of image and video processing’ (Academic Press, 2000).
    23. 23)
    24. 24)
      • 30. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: ‘TID2008 – a database for evaluation of full-reference visual quality assessment metrics’, Adv. Modern Radioelectron., 2009, 10, pp. 3045.
    25. 25)
      • 19. Kim, S., Allebach, J.P.: ‘Optimal unsharp mask for image sharpening and noise removal’, J. Electron. Imaging, 2005, 14, (2), pp. 023007-1023007-13.
    26. 26)
      • 11. Pham, T.Q., Van Vliet, L.J.: ‘Separable bilateral filtering for fast video preprocessing’. IEEE Int. Conf. on Multimedia and Expo (ICME), 2005, pp. 454457.
    27. 27)
      • 21. Pham, C.C., Ha, S.V.U., Jeon, J.W.: ‘Adaptive guided image filtering for sharpness enhancement and noise reduction’. PSIVT2011, 2012, (LNCS7087), pp. 323334.
    28. 28)
    29. 29)
      • 4. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Proc. IEEE Intl. Conf. on Computer Vision (ICCV), 1998, pp. 839846.
    30. 30)
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2013.0563
Loading

Related content

content/journals/10.1049/iet-ipr.2013.0563
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address