access icon free Robust registration of partially overlapping point sets via genetic algorithm with growth operator

Recently, genetic algorithm (GA) has been introduced as an effective method to solve the registration problem. It maintains a population of candidate solutions for the problem and evolves by iteratively applying a set of stochastic operators. Accordingly, a key question is how to reduce the population size. In this study, the authors present two techniques for reducing the population size in the GA for registration of partially overlapping point sets. Based on the trimmed iterative closest point algorithm, they introduce a growth operator into the GA. The growth operator, which is also inspired by the biological evolution, can improve the GA efficiency for registration. Furthermore, they present a technique called centre alignment to confirm the value range of all the registration parameters, which can reduce the search space and allow the well-designed GA to directly solve the registration problem. Experimental results carried out with the m-dimensional point sets illustrate its advantages over previous approaches.

Inspec keywords: image registration; genetic algorithms; iterative methods

Other keywords: genetic algorithm; centre alignment; partially overlapping point sets; trimmed iterative closest point algorithm; biological evolution; stochastic operators; registration parameters; growth operator; population size; registration problem

Subjects: Optimisation techniques; Optical, image and video signal processing; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Computer vision and image processing techniques; Optimisation techniques

References

    1. 1)
      • 30. Phillips, J.M., Ran, L., Tomasi, C.: ‘Outlier robust ICP for minimizing fractional RMSD’. Proc. of the Sixth Int. Conf. on 3-D Digital Imaging and Modeling (3DIM), 2007, pp. 427434.
    2. 2)
    3. 3)
      • 2. Megyesi, Z., Kos, G., Chetverikov, D.: ‘Dense 3D reconstruction from images by normal aided matching’, Mach. Graph. Vis., 2006, 15, (1), pp. 328.
    4. 4)
      • 35. Nuchter, A., Lingemann, K., Hertzberg, J.: ‘Cached k-d tree search for ICP algorithms’. Proc. Sixth Int. Conf. on 3D Digital Imaging and Modeling (3DIM), 2007, pp. 419426.
    5. 5)
    6. 6)
    7. 7)
      • 20. Brunnstrom, K., Stoddart, A.: ‘Genetic algorithms for free-form surface matching’. Proc. Int. Conf. on Pattern Recognition (ICPR), 1996, pp. 689693.
    8. 8)
    9. 9)
    10. 10)
      • 25. Silva, L., Bellon, Q., Boyer, K.: ‘Enhanced, robust genetic algorithms for multiview range image registration’. Proc. the Fourth Int. Conf. on 3D Digital Imaging and Modeling (3DIM), 2003, pp. 268275.
    11. 11)
    12. 12)
    13. 13)
      • 12. Rusinkiewicz, S., Levoy, M.: ‘Efficient variants of the ICP algorithm’. Proc. of Int. Conf. 3D Digital Imaging and Modeling (3DIM), 2001, pp. 145152.
    14. 14)
    15. 15)
      • 18. Melanie, M.: ‘An introduction to genetic algorithms’ (The MIT Press, Cambridge, 1999).
    16. 16)
    17. 17)
    18. 18)
      • 24. Olague, G., Hernandez, B., Dunn, E.: ‘Hybrid evolutionary ridge regression approach for high-accurate corner extraction’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2003, pp. 744749.
    19. 19)
    20. 20)
      • 38. Latecki, L.J., Lakamper, R., Eckhardt, R.: ‘Shape descriptors for non-rigid shapes with a single closed contour’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2000, pp. 424429.
    21. 21)
      • 3. Pooja, A., Govindu, V.M.: ‘A multi-view extension of the ICP algorithm’. Proc. of Indian Conf. on Graphics, Vision and Image Processing (ICVGIP), 2010.
    22. 22)
    23. 23)
      • 10. Jin, T., Kuang, J.Y.: ‘A 3-D point sets registration method in reverse engineering’, Comput. Ind. Eng., 2007, 53, (2), pp. 272276.
    24. 24)
    25. 25)
    26. 26)
      • 36. Hwang, Y., Han, B., Ahn, H.K.: ‘A fast nearest neighbor search algorithm by nonlinear embedding’. Proc. of Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 30533060.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 14. Granger, S., Pennec, X.: ‘Multi-scale EM-ICP a fast and robust approach for surface registration’. Proc. of European Conf. on Computer Vision (ECCV), 2002, pp. 418432.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 23. Salomon, M., Perrin, G., Heitz, F.: ‘Differential evolution for medical image registration’. Proc. of Int. Conf. on Artificial Intell., 2001, pp. 201207.
    36. 36)
    37. 37)
    38. 38)
      • 34. Greenspan, M., Yurick, M.: ‘Approximate k-d tree search for efficient ICP’. Proc. of the Fourth Int. Conf. on 3-D Digital Imaging and Modeling (3DIM), 2003, pp. 419426.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2013.0545
Loading

Related content

content/journals/10.1049/iet-ipr.2013.0545
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading