http://iet.metastore.ingenta.com
1887

Detection of local invariant features using contour

Detection of local invariant features using contour

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a new method for the detection of local invariant features with contour. This method differs from traditional methods that use image intensity. Image contours can be extracted stably with changes in viewpoint, scale, illumination and other factors. The proposed algorithm first extracts the stable corner from the contour, then it fits the supporting region of the contour near the corner to an angle, and uses its bisector as the direction of the feature. Next, it searches the contour for the tangent point in the direction of the angle bisector. Finally, with the corner as the centre, and in combination with the tangent point and the feature direction, an elliptic invariant region is constructed. The feasibility of the algorithm was verified experimentally by comparing its repetition rate. Test images obtained from actual scenes include several types of transformations, such as rotation, scaling, affinity, illumination and noise. The results of the experiment show the feasibility of the proposed method for use in local invariant features detection.

References

    1. 1)
      • 1. Colletto, F., Marcon, M., Sarti, A., Tubaro, S.: ‘A robust method for the estimation of reliable wide baseline correspondences’. Proc. IEEE Int. Conf. on Image Processing, Atlanta, GA, USA, 2006, pp. 10411044.
    2. 2)
      • 2. Yang, Z., Guo, B.: ‘Image mosaic based on SIFT’. Proc. Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, 2008, pp. 14221425.
    3. 3)
      • 3. Suga, A., Fukuda, K., Takiguchi, T., Ariki, Y.: ‘Object recognition and segmentation using SIFT and graph cuts’. Proc. Int. Conf. on Pattern Recognition, Tampa, Florida, USA, 2008.
    4. 4)
      • 4. Liu, J., Chen, Z., Guo, R.: ‘A mosaic method for aerial image sequence by R/C model’. Proc. Int. Conf. on Computer Science and Software Engineering, Wuhan, China, 2008, pp. 5861.
    5. 5)
      • 5. Schmid, C., Mohr, R.: ‘Local gray value invariants for image retrieval’, IEEE Trans. Pattern. Anal. Mach. Intell., 1997, 19, (5), pp. 530535 (doi: 10.1109/34.589215).
    6. 6)
      • 6. Moravec, H.: ‘Rover visual obstacle avoidance’. Proc. Int. Conf. on Artificial Intelligence, Vancouver, Canada, 1981, pp. 785790.
    7. 7)
      • 7. Harris, C., Stephens, M.: ‘A combined corner and edge detector’. Proc. Alvey Vision Conf., Manchester, UK, 1988, pp. 147151.
    8. 8)
      • 8. Lowe, D.: ‘Distinctive image features from scale-invariant keypoints detectors’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110 (doi: 10.1023/B:VISI.0000029664.99615.94).
    9. 9)
      • 9. Lindeberg, T., Gardinig, J.: ‘Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image’, Vis. Comput., 1997, 15, (6), pp. 415434 (doi: 10.1016/S0262-8856(97)01144-X).
    10. 10)
      • 10. Mikolajczyk, K., Schmid, C.: ‘Scale & affine invariant interest point detectors’, Int. J. Comput. Vis., 2004, 60, (1), pp. 6386 (doi: 10.1023/B:VISI.0000027790.02288.f2).
    11. 11)
      • 11. Matas, J., Chum, O., Urban, M., Pajdla, T.: ‘Robust wide-baseline stereo from maximally stable external regions’, Image Vis. Comput., 2004, 22, (10), pp. 761767 (doi: 10.1016/j.imavis.2004.02.006).
    12. 12)
      • 12. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630 (doi: 10.1109/TPAMI.2005.188).
    13. 13)
      • 13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: ‘A comparison of affine region detectors’, Int. J. Comput. Vis., 2005, 65, (1), pp. 4372 (doi: 10.1007/s11263-005-3848-x).
    14. 14)
      • 14. Tuytelaars, T., Mikolajczyk, K.: ‘Local invariant feature detectors: a survey’, Found. Trends Comput. Graph. Vis., 2007, 3, (1), pp. 177280 (doi: 10.1561/0600000017).
    15. 15)
      • 15. Morel, J.M., Yu, G.: ‘ASIFT: a new framework for fully affine invariant image comparison’, SIAM J. Imag. Sci., 2009, 2, (2), pp. 438468 (doi: 10.1137/080732730).
    16. 16)
      • 16. Yu, G., Morel, J.M.: ‘A fully affine invariant image comparison method’. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, 2009, pp. 15971600.
    17. 17)
      • 17. Tuytelaars, T., van Gool, L.: ‘Matching widely separated views based on affine invariant regions’, Int. J. Comput. Vis., 2004, 59, (1), pp. 6185 (doi: 10.1023/B:VISI.0000020671.28016.e8).
    18. 18)
      • 18. Yang, D., Wang, H.X., Zhang, X.H.: ‘LoG transformation of contour curve and detection of image covariant region’, Acta Autom. Sinica, 2010, 36, (6), pp. 817822 (doi: 10.3724/SP.J.1004.2010.00817).
    19. 19)
      • 19. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8, (6), pp. 679698. (doi: 10.1109/TPAMI.1986.4767851).
    20. 20)
      • 20. Mokhtarian, F., Suomela, R.: ‘Robust image corner detection through curvature scale space’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (12), pp. 13761381 (doi: 10.1109/34.735812).
    21. 21)
      • 21. He, X.C., Yung, N.H.C.: ‘Curvature scale space corner detector with adaptive threshold and dynamic region of support’. Proc. Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, pp. 791794.
    22. 22)
      • 22. Quaddus, A., Gabbouj, M.: ‘Wavelet-based corner detection technique using optimal scale’, Pattern Recogn. Lett., 2002, 23, (1), pp. 215220 (doi: 10.1016/S0167-8655(01)00090-3).
    23. 23)
      • 23. http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html, accessed May 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0492
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address