http://iet.metastore.ingenta.com
1887

Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database

Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Automatic assessment of retinal vessels plays an important role in the diagnosis of various eye, as well as systemic diseases. A public screening is highly desirable for prompt and effective treatment, since such diseases need to be diagnosed at an early stage. Automated and accurate segmentation of the retinal blood vessel tree is one of the challenging tasks in the computer-aided analysis of fundus images today. We improve the concept of matched filtering, and propose a novel and accurate method for segmenting retinal vessels. Our goal is to be able to segment blood vessels with varying vessel diameters in high-resolution colour fundus images. All recent authors compare their vessel segmentation results to each other using only low-resolution retinal image databases. Consequently, we provide a new publicly available high-resolution fundus image database of healthy and pathological retinas. Our performance evaluation shows that the proposed blood vessel segmentation approach is at least comparable with recent state-of-the-art methods. It outperforms most of them with an accuracy of 95% evaluated on the new database.

References

    1. 1)
      • 1. Ciulla, T.A., Regillo, C.D., Harris, A.H.: ‘Retina and optic nerve imaging’ (Lippincott Williams and Wilkins, 2003), pp. 369.
    2. 2)
      • 2. Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G.: ‘Glaucoma risk index: automated glaucoma detection from color fundus images’, Med. Image Anal., 2010, 14, (3), pp. 471481 (doi: 10.1016/j.media.2009.12.006).
    3. 3)
      • 3. Wang, J.J., Liew, G., Klein, R., Rochtchina, E., Knudtson, M.D.: ‘Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations’, Eur. Heart J., 2007, 28, (16), pp. 19841992 (doi: 10.1093/eurheartj/ehm221).
    4. 4)
      • 4. Fleming, A.D., Philip, S., Goatman, K.A., Olson, J.A., Sharp, P.F.: ‘Automated microaneurysm detection using local contrast normalization and local vessel detection’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12231232 (doi: 10.1109/TMI.2006.879953).
    5. 5)
      • 5. Grisan, E., Foracchia, M., Ruggeri, A.: ‘A novel method for the automatic grading of retinal vessel tortuosity’, IEEE Trans. Med. Imaging, 2008, 27, (3), pp. 310319 (doi: 10.1109/TMI.2007.904657).
    6. 6)
      • 6. Wang, S., Xu, L., Wang, Y., Jonas, J.B.: ‘Retinal vessel diameter in normal and glaucomatous eyes: the Beijing eye study’, Clin. Exp. Ophth., 2007, 35, (9), pp. 800807 (doi: 10.1111/j.1442-9071.2007.01627.x).
    7. 7)
      • 7. Calvo, D., Ortega, M., Penedo, G.M., Rouco, J.: ‘Automatic detection and characterization of retinal vessel tree bifurcations and crossovers in eye fundus images’, Comput. Methods Programs Biomed., 2011, 103, (1), pp. 2338 (doi: 10.1016/j.cmpb.2010.06.002).
    8. 8)
      • 8. Kolar, R., Kubecka, L., Jan, J.: ‘Registration and fusion of the autofluorescent and infrared retinal images’, Int. J. Biomed. Imaging, 2008, 2008, pp. 111 (doi: 10.1155/2008/513478).
    9. 9)
      • 9. Niemeijer, M., Abramoff, M.D., Ginneken, B.: ‘Segmentation of the optic disc, macula and vascular arch in fundus photographs’, IEEE Trans. Med. Imaging, 2007, 26, (1), pp. 116127 (doi: 10.1109/TMI.2006.885336).
    10. 10)
      • 10. Muramatsu, Ch., Hayashi, Y., Sawada, A., et al: ‘Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma’, J. Biomed. Opt., 2010, 15, (1), pp. 17 (doi: 10.1117/1.3322388).
    11. 11)
      • 11. Han, S., Xu, Z., Sun, Ch.: ‘The recognition based on band tree for blood vessel of ocular fundus’. Proc. IEEE Int. Conf. on Mechatronics and Automation, Changchun, China, August 2009, pp. 33483353.
    12. 12)
      • 12. Odstrcilik, J., Jan, J., Kolar, R., Gazarek, J.: ‘Improvement of vessel segmentation by matched filtering in colour retinal images’. Proc. World Congress on Med. Physics and Biomed. Eng., Munich, Germany, September 2009, pp. 327330.
    13. 13)
      • 13. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509 (doi: 10.1109/TMI.2004.825627).
    14. 14)
      • 14. Hoover, A., Kouznetsova, V., Goldbaum, M.H.: ‘Locating blood vessels in retinal images by piece–wise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210 (doi: 10.1109/42.845178).
    15. 15)
      • 15. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘Blood vessel segmentation methodologies in retinal images – a survey’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 407433 (doi: 10.1016/j.cmpb.2012.03.009).
    16. 16)
      • 16. Vlachos, M., Dermatas, E.: ‘Multi–scale retinal vessel segmentation using line tracking’, Comput. Med. Imaging Graph., 2010, 34, (3), pp. 213227 (doi: 10.1016/j.compmedimag.2009.09.006).
    17. 17)
      • 17. Tramontan, L., Poletti, E., Fiorin, D., Ruggeri, A.: ‘A web-based system for the quantitative and reproducible assessment of clinical indexes from the retinal vasculature’, IEEE Trans. Biomed. Eng., 2011, 58, (3), pp. 818821 (doi: 10.1109/TBME.2010.2085001).
    18. 18)
      • 18. Giani, A., Grisan, E., Ruggeri, A.: ‘Enhanced classification–based vessel tracking using vessel models and Hough transform’. Proc. Third Europe on Medical and Biological Engineering Conf. EMBEC 2005, Prague, Czech Republic, November 2005.
    19. 19)
      • 19. Ricci, E., Perfetti, R.: ‘Retinal blood vessel segmentation using line operators and support vector classification’, IEEE Trans. Med. Imaging, 2007, 26, (10), pp. 13571365 (doi: 10.1109/TMI.2007.898551).
    20. 20)
      • 20. Marín, D., Aquino, A., Gegúndez–Arias, M.E., Bravo, J.M.: ‘A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features’, IEEE Trans. Med. Imaging, 2011, 30, (1), pp. 146158 (doi: 10.1109/TMI.2010.2064333).
    21. 21)
      • 21. Lupascu, A.C., Tegolo, D., Trucco, E.: ‘FABC: Retinal vessel segmentation using AdaBoost’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (5), pp. 12671274 (doi: 10.1109/TITB.2010.2052282).
    22. 22)
      • 22. Delibasis, K.K., Kechriniotis, I.A., Tsonos, C., Assimakis, N.: ‘Automatic model-based tracing algorithm for vessel segmentation and diameter estimation’, Comput. Methods Programs Biomed., 2010, 100, (2), pp. 108122 (doi: 10.1016/j.cmpb.2010.03.004).
    23. 23)
      • 23. Lam, B.S.Y., Gao, Y., Wee-Chung-Liew, A.: ‘General retinal vessel segmentation using regularization-based multiconcavity modeling’, IEEE Trans. Med. Imaging, 2010, 29, (7), pp. 13691380 (doi: 10.1109/TMI.2010.2043259).
    24. 24)
      • 24. Zhu, T.: ‘Fourier cross-sectional profile for vessel detection on retinal images’, Comput. Med. Imaging Graph., 2010, 34, (3), pp. 203212 (doi: 10.1016/j.compmedimag.2009.09.004).
    25. 25)
      • 25. Al-Diri, B., Hunter, A., Steel, D.: ‘An active contour model for segmenting and measuring retinal vessels’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 14881497 (doi: 10.1109/TMI.2009.2017941).
    26. 26)
      • 26. Palomera-Pérez, M.A., Martinez-Perez, M.E., Benítez-Pérez, H., Ortega-Arjona, J.L.: ‘Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (2), pp. 500506 (doi: 10.1109/TITB.2009.2036604).
    27. 27)
      • 27. Mendonca, A.M., Campilho, A.: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12001213 (doi: 10.1109/TMI.2006.879955).
    28. 28)
      • 28. Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: ‘Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12141222 (doi: 10.1109/TMI.2006.879967).
    29. 29)
      • 29. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: ‘Detection of blood vessels in retinal images using two–dimensional matched filters’, IEEE Trans. Med. Imag., 1989, 8, (3), pp. 263269 (doi: 10.1109/42.34715).
    30. 30)
      • 30. Al-Rawi, M., Karajeh, H.: ‘Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images’, Comput. Methods Programs Biomed., 2007, 87, (3), pp. 248253 (doi: 10.1016/j.cmpb.2007.05.012).
    31. 31)
      • 31. Cinsdikici, M.G., Aydin, D.: ‘Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm’, Comput. Methods Programs Biomed., 2009, 96, (2), pp. 8595 (doi: 10.1016/j.cmpb.2009.04.005).
    32. 32)
      • 32. Zhang, B., Zhang, L., Zhang, L., Karray, F.: ‘Retinal vessel extraction by matched filter with first–order derivative of Gaussian’, Comput. Biol. Med., 2010, 40, (4), pp. 438445 (doi: 10.1016/j.compbiomed.2010.02.008).
    33. 33)
      • 33. Budai, A., Michelson, G., Hornegger, J.: ‘Multiscale blood vessel segmentation in retinal fundus images’. Proc. Bildverarbeitung für die Med. 2010 – Alg., Syst., Anwendungen, Aachen, Germany, March 2010, pp. 261265.
    34. 34)
      • 34. Niemann, H., Chrastek, R., Lausen, B., et al: ‘Towards automated diagnostic evaluation of retina images’, Pattern Recogn. Image Anal., 2006, 16, (4), pp. 671676 (doi: 10.1134/S1054661806040146).
    35. 35)
      • 35. Dierckx, P.: ‘Curve and surfaces fitting with splines’ (Oxford University Press, 1996).
    36. 36)
      • 36. Kittler, J., Illingworth, J.: ‘Minimum error thresholding’, Pattern Recogn., 1986, 19, (1), pp. 4147 (doi: 10.1016/0031-3203(86)90030-0).
    37. 37)
      • 37. Sezgin, M., Sankur, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, J. Electron. Imaging, 2004, 13, (1), pp. 146165 (doi: 10.1117/1.1631315).
    38. 38)
      • 38. Otsu, N.: ‘A threshold selection method from gray–level histograms’, IEEE Trans. Systems Man Cybernet., 1979, 9, (1), pp. 6266 (doi: 10.1109/TSMC.1979.4310076).
    39. 39)
      • 39. Chanwimaluang, T., Fan, G.: ‘An efficient blood vessel detection algorithm for retinal images using local entropy thresholding’. Proc. Int. Symp. Circuits Systems 2003, Bangkok, Thailand, May 2003, pp. 2124.
    40. 40)
      • 40. Fawcett, T.: ‘An introduction to ROC analysis’, Pattern Recogn. Lett., 2006, 27, (8), pp. 861874 (doi: 10.1016/j.patrec.2005.10.010).
    41. 41)
      • 41. Niemeijer, M., Ginneken, B., Russell, S.R., Suttorp-Schulten, M.S.A., Abramoff, M.D.: ‘Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diangosis’, Invest. Ophthalmol. Vis. Sci., 2007, 48, (5), pp. 22602267 (doi: 10.1167/iovs.06-0996).
    42. 42)
      • 42. Akram, M.U., Tariq, A., Anjum, M.A., Younnus-Javed, M.: ‘Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy’, Appl. Opt., 2012, 51, (20), pp. 48584866 (doi: 10.1364/AO.51.004858).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0455
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0455
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address