http://iet.metastore.ingenta.com
1887

Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database

Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Automatic assessment of retinal vessels plays an important role in the diagnosis of various eye, as well as systemic diseases. A public screening is highly desirable for prompt and effective treatment, since such diseases need to be diagnosed at an early stage. Automated and accurate segmentation of the retinal blood vessel tree is one of the challenging tasks in the computer-aided analysis of fundus images today. We improve the concept of matched filtering, and propose a novel and accurate method for segmenting retinal vessels. Our goal is to be able to segment blood vessels with varying vessel diameters in high-resolution colour fundus images. All recent authors compare their vessel segmentation results to each other using only low-resolution retinal image databases. Consequently, we provide a new publicly available high-resolution fundus image database of healthy and pathological retinas. Our performance evaluation shows that the proposed blood vessel segmentation approach is at least comparable with recent state-of-the-art methods. It outperforms most of them with an accuracy of 95% evaluated on the new database.

References

    1. 1)
      • T.A. Ciulla , C.D. Regillo , A.H. Harris . (2003)
        1. Ciulla, T.A., Regillo, C.D., Harris, A.H.: ‘Retina and optic nerve imaging’ (Lippincott Williams and Wilkins, 2003), pp. 369.
        .
    2. 2)
      • R. Bock , J. Meier , L.G. Nyúl , J. Hornegger , G. Michelson .
        2. Bock, R., Meier, J., Nyúl, L.G., Hornegger, J., Michelson, G.: ‘Glaucoma risk index: automated glaucoma detection from color fundus images’, Med. Image Anal., 2010, 14, (3), pp. 471481 (doi: 10.1016/j.media.2009.12.006).
        . Med. Image Anal. , 3 , 471 - 481
    3. 3)
      • J.J. Wang , G. Liew , R. Klein , E. Rochtchina , M.D. Knudtson .
        3. Wang, J.J., Liew, G., Klein, R., Rochtchina, E., Knudtson, M.D.: ‘Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations’, Eur. Heart J., 2007, 28, (16), pp. 19841992 (doi: 10.1093/eurheartj/ehm221).
        . Eur. Heart J. , 16 , 1984 - 1992
    4. 4)
      • A.D. Fleming , S. Philip , K.A. Goatman , J.A. Olson , P.F. Sharp .
        4. Fleming, A.D., Philip, S., Goatman, K.A., Olson, J.A., Sharp, P.F.: ‘Automated microaneurysm detection using local contrast normalization and local vessel detection’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12231232 (doi: 10.1109/TMI.2006.879953).
        . IEEE Trans. Med. Imaging , 9 , 1223 - 1232
    5. 5)
      • E. Grisan , M. Foracchia , A. Ruggeri .
        5. Grisan, E., Foracchia, M., Ruggeri, A.: ‘A novel method for the automatic grading of retinal vessel tortuosity’, IEEE Trans. Med. Imaging, 2008, 27, (3), pp. 310319 (doi: 10.1109/TMI.2007.904657).
        . IEEE Trans. Med. Imaging , 3 , 310 - 319
    6. 6)
      • S. Wang , L. Xu , Y. Wang , J.B. Jonas .
        6. Wang, S., Xu, L., Wang, Y., Jonas, J.B.: ‘Retinal vessel diameter in normal and glaucomatous eyes: the Beijing eye study’, Clin. Exp. Ophth., 2007, 35, (9), pp. 800807 (doi: 10.1111/j.1442-9071.2007.01627.x).
        . Clin. Exp. Ophth. , 9 , 800 - 807
    7. 7)
      • D. Calvo , M. Ortega , G.M. Penedo , J. Rouco .
        7. Calvo, D., Ortega, M., Penedo, G.M., Rouco, J.: ‘Automatic detection and characterization of retinal vessel tree bifurcations and crossovers in eye fundus images’, Comput. Methods Programs Biomed., 2011, 103, (1), pp. 2338 (doi: 10.1016/j.cmpb.2010.06.002).
        . Comput. Methods Programs Biomed. , 1 , 23 - 38
    8. 8)
      • R. Kolar , L. Kubecka , J. Jan .
        8. Kolar, R., Kubecka, L., Jan, J.: ‘Registration and fusion of the autofluorescent and infrared retinal images’, Int. J. Biomed. Imaging, 2008, 2008, pp. 111 (doi: 10.1155/2008/513478).
        . Int. J. Biomed. Imaging , 1 - 11
    9. 9)
      • M. Niemeijer , M.D. Abramoff , B. Ginneken .
        9. Niemeijer, M., Abramoff, M.D., Ginneken, B.: ‘Segmentation of the optic disc, macula and vascular arch in fundus photographs’, IEEE Trans. Med. Imaging, 2007, 26, (1), pp. 116127 (doi: 10.1109/TMI.2006.885336).
        . IEEE Trans. Med. Imaging , 1 , 116 - 127
    10. 10)
      • Ch. Muramatsu , Y. Hayashi , A. Sawada .
        10. Muramatsu, Ch., Hayashi, Y., Sawada, A., et al: ‘Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma’, J. Biomed. Opt., 2010, 15, (1), pp. 17 (doi: 10.1117/1.3322388).
        . J. Biomed. Opt. , 1 , 1 - 7
    11. 11)
      • S. Han , Z. Xu , Ch. Sun .
        11. Han, S., Xu, Z., Sun, Ch.: ‘The recognition based on band tree for blood vessel of ocular fundus’. Proc. IEEE Int. Conf. on Mechatronics and Automation, Changchun, China, August 2009, pp. 33483353.
        . Proc. IEEE Int. Conf. on Mechatronics and Automation , 3348 - 3353
    12. 12)
      • J. Odstrcilik , J. Jan , R. Kolar , J. Gazarek .
        12. Odstrcilik, J., Jan, J., Kolar, R., Gazarek, J.: ‘Improvement of vessel segmentation by matched filtering in colour retinal images’. Proc. World Congress on Med. Physics and Biomed. Eng., Munich, Germany, September 2009, pp. 327330.
        . Proc. World Congress on Med. Physics and Biomed. Eng. , 327 - 330
    13. 13)
      • J. Staal , M.D. Abramoff , M. Niemeijer , M.A. Viergever , B. Ginneken .
        13. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509 (doi: 10.1109/TMI.2004.825627).
        . IEEE Trans. Med. Imaging , 4 , 501 - 509
    14. 14)
      • A. Hoover , V. Kouznetsova , M.H. Goldbaum .
        14. Hoover, A., Kouznetsova, V., Goldbaum, M.H.: ‘Locating blood vessels in retinal images by piece–wise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210 (doi: 10.1109/42.845178).
        . IEEE Trans. Med. Imaging , 3 , 203 - 210
    15. 15)
      • M.M. Fraz , P. Remagnino , A. Hoppe .
        15. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘Blood vessel segmentation methodologies in retinal images – a survey’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 407433 (doi: 10.1016/j.cmpb.2012.03.009).
        . Comput. Methods Programs Biomed. , 1 , 407 - 433
    16. 16)
      • M. Vlachos , E. Dermatas .
        16. Vlachos, M., Dermatas, E.: ‘Multi–scale retinal vessel segmentation using line tracking’, Comput. Med. Imaging Graph., 2010, 34, (3), pp. 213227 (doi: 10.1016/j.compmedimag.2009.09.006).
        . Comput. Med. Imaging Graph. , 3 , 213 - 227
    17. 17)
      • L. Tramontan , E. Poletti , D. Fiorin , A. Ruggeri .
        17. Tramontan, L., Poletti, E., Fiorin, D., Ruggeri, A.: ‘A web-based system for the quantitative and reproducible assessment of clinical indexes from the retinal vasculature’, IEEE Trans. Biomed. Eng., 2011, 58, (3), pp. 818821 (doi: 10.1109/TBME.2010.2085001).
        . IEEE Trans. Biomed. Eng. , 3 , 818 - 821
    18. 18)
      • A. Giani , E. Grisan , A. Ruggeri .
        18. Giani, A., Grisan, E., Ruggeri, A.: ‘Enhanced classification–based vessel tracking using vessel models and Hough transform’. Proc. Third Europe on Medical and Biological Engineering Conf. EMBEC 2005, Prague, Czech Republic, November 2005.
        . Proc. Third Europe on Medical and Biological Engineering Conf. EMBEC 2005
    19. 19)
      • E. Ricci , R. Perfetti .
        19. Ricci, E., Perfetti, R.: ‘Retinal blood vessel segmentation using line operators and support vector classification’, IEEE Trans. Med. Imaging, 2007, 26, (10), pp. 13571365 (doi: 10.1109/TMI.2007.898551).
        . IEEE Trans. Med. Imaging , 10 , 1357 - 1365
    20. 20)
      • D. Marín , A. Aquino , M.E. Gegúndez–Arias , J.M. Bravo .
        20. Marín, D., Aquino, A., Gegúndez–Arias, M.E., Bravo, J.M.: ‘A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features’, IEEE Trans. Med. Imaging, 2011, 30, (1), pp. 146158 (doi: 10.1109/TMI.2010.2064333).
        . IEEE Trans. Med. Imaging , 1 , 146 - 158
    21. 21)
      • A.C. Lupascu , D. Tegolo , E. Trucco .
        21. Lupascu, A.C., Tegolo, D., Trucco, E.: ‘FABC: Retinal vessel segmentation using AdaBoost’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (5), pp. 12671274 (doi: 10.1109/TITB.2010.2052282).
        . IEEE Trans. Inf. Technol. Biomed. , 5 , 1267 - 1274
    22. 22)
      • K.K. Delibasis , I.A. Kechriniotis , C. Tsonos , N. Assimakis .
        22. Delibasis, K.K., Kechriniotis, I.A., Tsonos, C., Assimakis, N.: ‘Automatic model-based tracing algorithm for vessel segmentation and diameter estimation’, Comput. Methods Programs Biomed., 2010, 100, (2), pp. 108122 (doi: 10.1016/j.cmpb.2010.03.004).
        . Comput. Methods Programs Biomed. , 2 , 108 - 122
    23. 23)
      • B.S.Y. Lam , Y. Gao , A. Wee-Chung-Liew .
        23. Lam, B.S.Y., Gao, Y., Wee-Chung-Liew, A.: ‘General retinal vessel segmentation using regularization-based multiconcavity modeling’, IEEE Trans. Med. Imaging, 2010, 29, (7), pp. 13691380 (doi: 10.1109/TMI.2010.2043259).
        . IEEE Trans. Med. Imaging , 7 , 1369 - 1380
    24. 24)
      • T. Zhu .
        24. Zhu, T.: ‘Fourier cross-sectional profile for vessel detection on retinal images’, Comput. Med. Imaging Graph., 2010, 34, (3), pp. 203212 (doi: 10.1016/j.compmedimag.2009.09.004).
        . Comput. Med. Imaging Graph. , 3 , 203 - 212
    25. 25)
      • B. Al-Diri , A. Hunter , D. Steel .
        25. Al-Diri, B., Hunter, A., Steel, D.: ‘An active contour model for segmenting and measuring retinal vessels’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 14881497 (doi: 10.1109/TMI.2009.2017941).
        . IEEE Trans. Med. Imaging , 9 , 1488 - 1497
    26. 26)
      • M.A. Palomera-Pérez , M.E. Martinez-Perez , H. Benítez-Pérez , J.L. Ortega-Arjona .
        26. Palomera-Pérez, M.A., Martinez-Perez, M.E., Benítez-Pérez, H., Ortega-Arjona, J.L.: ‘Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (2), pp. 500506 (doi: 10.1109/TITB.2009.2036604).
        . IEEE Trans. Inf. Technol. Biomed. , 2 , 500 - 506
    27. 27)
      • A.M. Mendonca , A. Campilho .
        27. Mendonca, A.M., Campilho, A.: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12001213 (doi: 10.1109/TMI.2006.879955).
        . IEEE Trans. Med. Imaging , 9 , 1200 - 1213
    28. 28)
      • J.V.B. Soares , J.J.G. Leandro , R.M. Cesar Jr. , H.F. Jelinek , M.J. Cree .
        28. Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: ‘Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12141222 (doi: 10.1109/TMI.2006.879967).
        . IEEE Trans. Med. Imaging , 9 , 1214 - 1222
    29. 29)
      • S. Chaudhuri , S. Chatterjee , N. Katz , M. Nelson , M. Goldbaum .
        29. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: ‘Detection of blood vessels in retinal images using two–dimensional matched filters’, IEEE Trans. Med. Imag., 1989, 8, (3), pp. 263269 (doi: 10.1109/42.34715).
        . IEEE Trans. Med. Imag. , 3 , 263 - 269
    30. 30)
      • M. Al-Rawi , H. Karajeh .
        30. Al-Rawi, M., Karajeh, H.: ‘Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images’, Comput. Methods Programs Biomed., 2007, 87, (3), pp. 248253 (doi: 10.1016/j.cmpb.2007.05.012).
        . Comput. Methods Programs Biomed. , 3 , 248 - 253
    31. 31)
      • M.G. Cinsdikici , D. Aydin .
        31. Cinsdikici, M.G., Aydin, D.: ‘Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm’, Comput. Methods Programs Biomed., 2009, 96, (2), pp. 8595 (doi: 10.1016/j.cmpb.2009.04.005).
        . Comput. Methods Programs Biomed. , 2 , 85 - 95
    32. 32)
      • B. Zhang , L. Zhang , L. Zhang , F. Karray .
        32. Zhang, B., Zhang, L., Zhang, L., Karray, F.: ‘Retinal vessel extraction by matched filter with first–order derivative of Gaussian’, Comput. Biol. Med., 2010, 40, (4), pp. 438445 (doi: 10.1016/j.compbiomed.2010.02.008).
        . Comput. Biol. Med. , 4 , 438 - 445
    33. 33)
      • A. Budai , G. Michelson , J. Hornegger .
        33. Budai, A., Michelson, G., Hornegger, J.: ‘Multiscale blood vessel segmentation in retinal fundus images’. Proc. Bildverarbeitung für die Med. 2010 – Alg., Syst., Anwendungen, Aachen, Germany, March 2010, pp. 261265.
        . Proc. Bildverarbeitung für die Med. 2010 – Alg., Syst., Anwendungen , 261 - 265
    34. 34)
      • H. Niemann , R. Chrastek , B. Lausen .
        34. Niemann, H., Chrastek, R., Lausen, B., et al: ‘Towards automated diagnostic evaluation of retina images’, Pattern Recogn. Image Anal., 2006, 16, (4), pp. 671676 (doi: 10.1134/S1054661806040146).
        . Pattern Recogn. Image Anal. , 4 , 671 - 676
    35. 35)
      • P. Dierckx . (1996)
        35. Dierckx, P.: ‘Curve and surfaces fitting with splines’ (Oxford University Press, 1996).
        .
    36. 36)
      • J. Kittler , J. Illingworth .
        36. Kittler, J., Illingworth, J.: ‘Minimum error thresholding’, Pattern Recogn., 1986, 19, (1), pp. 4147 (doi: 10.1016/0031-3203(86)90030-0).
        . Pattern Recogn. , 1 , 41 - 47
    37. 37)
      • M. Sezgin , B. Sankur .
        37. Sezgin, M., Sankur, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, J. Electron. Imaging, 2004, 13, (1), pp. 146165 (doi: 10.1117/1.1631315).
        . J. Electron. Imaging , 1 , 146 - 165
    38. 38)
      • N. Otsu .
        38. Otsu, N.: ‘A threshold selection method from gray–level histograms’, IEEE Trans. Systems Man Cybernet., 1979, 9, (1), pp. 6266 (doi: 10.1109/TSMC.1979.4310076).
        . IEEE Trans. Systems Man Cybernet. , 1 , 62 - 66
    39. 39)
      • T. Chanwimaluang , G. Fan .
        39. Chanwimaluang, T., Fan, G.: ‘An efficient blood vessel detection algorithm for retinal images using local entropy thresholding’. Proc. Int. Symp. Circuits Systems 2003, Bangkok, Thailand, May 2003, pp. 2124.
        . Proc. Int. Symp. Circuits Systems 2003 , 21 - 24
    40. 40)
      • T. Fawcett .
        40. Fawcett, T.: ‘An introduction to ROC analysis’, Pattern Recogn. Lett., 2006, 27, (8), pp. 861874 (doi: 10.1016/j.patrec.2005.10.010).
        . Pattern Recogn. Lett. , 8 , 861 - 874
    41. 41)
      • M. Niemeijer , B. Ginneken , S.R. Russell , M.S.A. Suttorp-Schulten , M.D. Abramoff .
        41. Niemeijer, M., Ginneken, B., Russell, S.R., Suttorp-Schulten, M.S.A., Abramoff, M.D.: ‘Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diangosis’, Invest. Ophthalmol. Vis. Sci., 2007, 48, (5), pp. 22602267 (doi: 10.1167/iovs.06-0996).
        . Invest. Ophthalmol. Vis. Sci. , 5 , 2260 - 2267
    42. 42)
      • M.U. Akram , A. Tariq , M.A. Anjum , M. Younnus-Javed .
        42. Akram, M.U., Tariq, A., Anjum, M.A., Younnus-Javed, M.: ‘Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy’, Appl. Opt., 2012, 51, (20), pp. 48584866 (doi: 10.1364/AO.51.004858).
        . Appl. Opt. , 20 , 4858 - 4866
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2012.0455
Loading

Related content

content/journals/10.1049/iet-ipr.2012.0455
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address