http://iet.metastore.ingenta.com
1887

Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture

Efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In motion estimation, the sub-pixel matching technique involves the search of sub-sample positions as well as integer-sample positions between the image pairs, choosing the one that gives the best match. Based on this idea, this work proposes an estimation algorithm, which performs a 2-D correspondence search using a hierarchical search pattern. The intermediate results are refined by 3-D cellular automata (CA). The disparity value is then defined using the distance of the matching position. Therefore the proposed algorithm can process uncalibrated and non-rectified stereo image pairs, maintaining the computational load within reasonable levels. Additionally, a hardware architecture of the algorithm is deployed. Its performance has been evaluated on both synthetic and real self-captured image sets. Its attributes, make the proposed method suitable for autonomous outdoor robotic applications.

References

    1. 1)
      • K. Konolige , M. Agrawal , R.C. Bolles , C. Cowan , M. Fischler , B.P. Gerkey , O. Khatib , V. Kumar , D. Rus . (2006) Outdoor mapping and navigation using stereo vision.
    2. 2)
      • N. Soquet , D. Aubert , N. Hautiere . (2007) Road segmentation supervised by an extended V-disparity algorithm for autonomous navigation, IEEE Intelligent Vehicles Symp..
    3. 3)
      • Hogue, A., German, A., Jenkin, M.: `Underwater environment reconstruction using stereo and inertial data', IEEE Int. Conf. on Systems, Man and Cybernetics, 2007, Montreal, Canada, p. 2372–2377.
    4. 4)
    5. 5)
      • http://vision.middlebury.edu/stereo/, 2009.
    6. 6)
      • L. Nalpantidis , G.C. Sirakoulis , A. Gasteratos , J. Darzentas , G.A. Vouros , S. Vosinakis , A. Arnellos . (2008) A dense stereo correspondence algorithm for hardware implementation with enhanced disparity selection.
    7. 7)
    8. 8)
      • Yin, P., Tourapis, H.Y.C., Tourapis, A., Boyce, J.: `Fast mode decision and motion estimation for JVT/H.264', Proc. Int. Conf. on Image Process, 2003, 3, p. 853–856.
    9. 9)
    10. 10)
    11. 11)
      • D. Murray , J.J. Little . Using real-time stereo vision for mobile robot navigation. Auton. Robots , 2 , 161 - 171
    12. 12)
      • Murray, D., Jennings, C.: `Stereo vision based mapping and navigation for mobile robots', Proc. IEEE Int. Conf. on Robotics and Automation, 1997, 2, p. 1694–1699.
    13. 13)
      • R. Jain , R. Kasturi , B.G. Schunck . (1995) Machine vision.
    14. 14)
      • A. Gasteratos , G. Sandini , I.P. Vlahavas , C.D. Spyropoulos . (2002) Factors affecting the accuracy of an active vision head.
    15. 15)
      • De Cubber, G., Doroftei, D., Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: `Stereo-based terrain traversability analysis for robot navigation', IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance, 2008, Brussels, Belgium.
    16. 16)
    17. 17)
      • D. Scharstein , R. Szeliski . A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. , 7 - 42
    18. 18)
      • P.H.S. Torra , A. Criminisi . Dense stereo using pivoted dynamic programming. Image Vis. Comput. , 10 , 795 - 806
    19. 19)
      • R. Labayrade , D. Aubert , J.P. Tarel . (2002) Real time obstacle detection in stereovision on non flat road geometry through ‘v-disparity’ representation, IEEE Intelligent Vehicle Symp..
    20. 20)
      • Kelly, A., Stentz, A.T.: `Stereo vision enhancements for low-cost outdoor autonomous vehicles', Int. Conf. on Robotics and Automation, Workshop WS-7, Navigation of Outdoor Autonomous Vehicles, (ICRA '98), 1998.
    21. 21)
      • Zhao, J., Katupitiya, J., Ward, J.: `Global correlation based ground plane estimation using v-disparity image', IEEE Int. Conf. on Robotics and Automation, 2007, Rome, Italy, p. 529–534.
    22. 22)
      • Agrawal, M., Konolige, K.G., Bolles, R.C.: `Localization and mapping for autonomous navigation in outdoor terrains: a stereo vision approach', IEEE Workshop on Applications of Computer Vision, 2007, p. 7.
    23. 23)
      • Zach, C., Karner, K., Bischof, H.: `Hierarchical disparity estimation with programmable 3D hardware', Proc. Int. Conf. Central Europe on Computer Graphics, Visualization and Computer Vision, 2004, p. 275–282.
    24. 24)
      • H. Jeong , S. Park , K. Pohang , S. Korea . (2004) Generalized Trellis stereo matching with systolic array.
    25. 25)
      • Park, S., Jeong, H., Pohang, K., Korea, S.: `Real-time stereo vision FPGA chip with low error rate', Proc. Int. Conf. on Multimedia and Ubiquitous Engineering, 2007, p. 751–756.
    26. 26)
      • Masrani, D., MacLean, W.: `A Real-time large disparity range stereo system using FPGAs', Proc. IEEE Int. Conf. on Computer Vision Systems, 2006, 3852, p. 13–20.
    27. 27)
      • L. Nalpantidis , G.C. Sirakoulis , A. Gasteratos . Review of stereo vision algorithms: from software to hardware. Int. J. Optomechatronics , 4 , 435 - 462
    28. 28)
      • J. Von Neumann . (1966) Theory of self-reproducing automata.
    29. 29)
      • B. Chopard , M. Droz . (1998) Cellular automata modeling of physical systems.
    30. 30)
      • Ulam, S.: `Random processes and transformations', Int. Congress on Mathematics, 1952, Cambridge, USA, 2, p. 264–275.
    31. 31)
      • R. Feynman . Simulating physics with computers. Int. J. Theor. Phys , 6 , 467 - 488
    32. 32)
      • S. Wolfram . (1986) Theory and applications of cellular automata.
    33. 33)
    34. 34)
      • Kotoulas, L., Gasteratos, A., Sirakoulis, G.C., Georgoulas, C., Andreadis, I.: `Enhancement of fast acquired disparity maps using a 1-D cellular automation filter', IASTED Int. Conf. on Visualization, Imaging and Image Processing, 2005, Benidorm, Spain, p. 355–359.
    35. 35)
      • G.C. Sirakoulis , I. Karafyllidis , A. Thanailakis . A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocess. Microsyst. , 8 , 381 - 396
    36. 36)
    37. 37)
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2009.0262
Loading

Related content

content/journals/10.1049/iet-ipr.2009.0262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address