Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-objective auto-regressive whale optimisation for traffic-aware routing in urban VANET

Vehicular ad-hoc network (VANET) is a growing networking concept that has been used increasingly in various applications including traffic alert broadcasting. The main purpose of VANET is to provide safety to the drivers by alerting them to the dangers that may happen. This study presents a traffic-aware routing protocol in VANET by the introduction of multi-objective auto-regressive whale optimisation (ARWO) algorithm. ARWO algorithm selects the best path from the multiple paths by considering the multiple objectives, such as end-to-end delay (EED), link life time, packet delay and distance, in the fitness function. Here, the traffic density and the expected average speed of the vehicle are predicted by the exponential weighted moving average approach. The performance of ARWO protocol is compared with four existing techniques, like stable CDS-based routing protocol, fractional glow worm swarm optimisation, glow worm swarm optimisation, and Whale Optimization Algorithm (WOA), using the metrics, EED, distance, traffic density, and throughput. The simulation results show that the proposed ARWO algorithm achieves EED of 2.941, a distance of 2.15, traffic density of 0.009 and throughput of 0.1, respectively, at maximum constraints, i.e. at a maximum number of vehicles and simulation time and thus proves its efficiency against the comparative protocols.

References

    1. 1)
      • 7. Liu, Y., Guo, W., Zhong, Q., et al: ‘LVAP: lightweight V2I authentication protocol using group communication in VANETs’, Int. J. Commun. Syst., 2017, 30, (16), pp. 111.
    2. 2)
      • 13. Zhang, J., Ma, L., Su, W., et al: ‘Privacy-preserving authentication based on short group signature in vehicular networks’. Proc. of the First Int. Symp. on Data, Privacy, and E-Commerce, Chengdu, Sichuan, China, 2007.
    3. 3)
      • 31. Memon, I., Arain, Q.A.: ‘Dynamic distributed mobility management system based on multiple mix-zones over road networks’, arXiv preprint arXiv: 2017, 1706.02252.
    4. 4)
      • 42. Yadav, A.K., Tripathi, S.: ‘QMRPRNS: design of QoS multicast routing protocol using reliable node selection scheme for MANETs’, Peer-to-Peer Netw. Appl., 2017, 10, (4), pp. 897909.
    5. 5)
      • 30. Memon, I., Arain, Q.A.: ‘Optimal placement of mix zones in road networks’, arXiv preprint arXiv: 2017, 1705.11104.
    6. 6)
      • 1. Taniguchi, E., Shimamoto, H.: ‘Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times’, Transp. Res. C, Emerg. Technol., 2004, 12, (3), pp. 235250.
    7. 7)
      • 5. Memon, I., Chen, L., Majid, A., et al: ‘Travel recommendation using geo-tagged photos in social media for tourist’, Wirel. Pers. Commun., 2015, 80, (4), pp. 13471362.
    8. 8)
      • 40. Mirjalili, S., Lewis, A.: ‘The whale optimization algorithm’, Adv. Eng. Softw., 2016, 95, pp. 5167.
    9. 9)
      • 33. Halim, A.H.A., Warip, M.N.M., Ahmad, R.B., et al: ‘Optimization of vehicular Ad Hoc network using Taguchi method’. Proc. of the Int. Conf. Computer, Communications, and Control Technology (I4CT), Kuching, Malaysia, 2015.
    10. 10)
      • 23. Liu, C., Shu, Y., Yang, O., et al: ‘SDR: a stable direction-based routing for vehicular ad hoc networks’, Wirel. Pers. Commun., 2013, 73, (3), pp. 12981308.
    11. 11)
      • 18. Darwish, T., Bakar, K.A.: ‘Traffic aware routing in vehicular ad hoc networks: characteristics and challenges’, Telecommun. Syst., 2016, 61, (3), pp. 489513.
    12. 12)
      • 2. Zhong, H., Wen, J., Cui, J., et al: ‘Efficient conditional privacy-preserving and authentication scheme for secure service provision in VANET’, Tsinghua Sci. Technol., 2016, 21, (6), pp. 620629.
    13. 13)
      • 24. Chang, J.J., Li, Y.H., Liao, W., et al: ‘Intersection-based routing for urban vehicular communications with traffic-light considerations’, IEEE Wirel. Commun., 2012, 19, (1), pp. 8288.
    14. 14)
      • 27. Mirjazaee, N., Moghim, N.: ‘An opportunistic routing based on symmetrical traffic distribution in vehicular networks’, Comput. Electr. Eng., 2015, 47, pp. 112.
    15. 15)
      • 3. Rajput, U., Abbas, F., Oh, H.: ‘A hierarchical privacy preserving pseudonymous authentication protocol for VANET’, IEEE Access, 2016, 4, pp. 77707784.
    16. 16)
      • 11. Arain, Q.A., Zhongliang, D., Memon, I., et al: ‘Privacy preserving dynamic pseudonym-based multiple mix-zones authentication protocol over road networks’, Wirel. Pers. Commun., 2017, 95, (2), pp. 505521.
    17. 17)
      • 34. Gaikwad, S.K., Deshmukh, A.R., Dorle, S.S.: ‘An ant colony optimization based routing techniques for VANET’, Int. J. Recent Innov. Trends Comput. Commun., 2016, 4, (4), pp. 418422.
    18. 18)
      • 21. Wang, Y., Li, F.: ‘Vehicular Ad Hoc networks’, in Misra, S., Woungang, I., Misra, S.C. (Eds.): ‘Guide to wireless ad hoc networks’ (Springer, London, 2009), pp. 503525.
    19. 19)
      • 20. Ramakrishnan, B., Sreedivya, S.R., Selvi, M.: ‘Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET)’, Int. J. Comput. Netw. Applic., 2015, 2, (4), pp. 173178.
    20. 20)
      • 9. Memon, I., Arain, Q.A., Memon, M.H., et al: ‘Search me if you can: multiple mix zones with location privacy protection for mapping services’, Int. J. Commun. Syst., 2017, 30, (16).
    21. 21)
      • 38. Arain, Q.A., Uqaili, M.A., Deng, Z., et al: ‘Clustering based energy efficient and communication protocol for multiple mix-zones over road networks’, Wirel. Pers. Commun., 2017, 95, (2), pp. 411428.
    22. 22)
      • 19. Wu, B., Qian, C., Ni, W., et al: ‘The improvement of glow worm swarm optimization for continuous optimization problems’, Expert Syst. Appl., 2012, 39, (7), pp. 63356342.
    23. 23)
      • 8. Arain, Q.A., Memon, I., Deng, Z., et al: ‘Location monitoring approach: multiple mix-zones with location privacy protection based on traffic flow over road networks’, Multimedia Tools Appl., 2017, pp. 145.
    24. 24)
      • 39. Bošnjak, S., Cisar, S.M.: ‘EWMA based threshold algorithm for intrusion detection’, Comput. Inf., 2010, 29, (6), pp. 10891101.
    25. 25)
      • 29. Arain, Q.A., Deng, Z., Memon, I., et al: ‘Privacy protection with dynamic pseudonym-based multiple mix-zones over road networks’, Chin. Commun., 2017, 14, (4), pp. 89100.
    26. 26)
      • 28. Sharef, B.T., Alsaqour, R.A., Ismail, M.: ‘Comparative study of variant position-based VANET routing protocols’, Procedia Technol., 2013, 11, pp. 532539.
    27. 27)
      • 37. Arain, Q.A., Deng, Z., Memon, I., et al: ‘Map services based on multiple mix-zones with location privacy protection over road network’, Wirel. Pers. Commun., 2017, 97, (2), pp. 26172632.
    28. 28)
      • 41. Balachandra, M., Prema, K.V., Makkithaya, M.: ‘Multiconstrained and multipath QoS aware routing protocol for MANETs’, Wirel. Netw., 2014, 20, (8), pp. 23952408.
    29. 29)
      • 16. Muthusenthil, B., Murugavalli, S.: ‘The impact of location based attacks on geographical routing protocols’, J. Theor. Appl. Inf. Technol., 2014, 60, (2), pp. 189199.
    30. 30)
      • 10. Memon, I., Hussain, I., Akhtar, R., et al: ‘Enhanced privacy and authentication: an efficient and secure anonymous communication for location based service using asymmetric cryptography scheme’, Wirel. Pers. Commun., 2015, 84, (2), pp. 14871508.
    31. 31)
      • 44. Togou, M.A., Hafid, A., Khoukhi, L.: ‘SCRP: stable CDS-based routing protocol for urban vehicular Ad Hoc networks’, IEEE Trans. Intell. Transp. Syst., 2015, 17, (5), pp. 12981307.
    32. 32)
      • 4. Akhtar, R., Leng, S., Wu, F., et al: ‘Improvement of content delivery in mobile social networks’. Proc. of the Int. Conf. Computational Problem-solving (ICCP), Jiuzhai, China, 2013.
    33. 33)
      • 22. Zhu, Y., Qiu, Y., Wu, Y., et al: ‘On adaptive routing in urban vehicular networks’. Proc. of IEEE Global Communication Conf., 2013, pp. 15931598.
    34. 34)
      • 17. Kopp, C., Tyson, M., Pose, R.: ‘Tomographic reconstruction of RF propagation to aid VANET routing in urban canyons’, IEEE Trans. Veh. Technol., 2016, 65, (12), pp. 98889901.
    35. 35)
      • 12. Memon, I., Mohammed, M.R., Khtar, R.A., et al: ‘Design and implementation to authentication over a GSM system using certificate-less public key cryptography (CL-PKC)’, Wirel. Pers. Commun., 2014, 79, (1), pp. 661686.
    36. 36)
      • 26. Hussain, R., Rezaeifar, Z., Oh, Y.H.L.H.: ‘Secure and privacy-aware traffic information as a service in VANET-based clouds’, Pervasive Mob. Comput., 2015, 24, pp. 194209.
    37. 37)
      • 43. Engle, R.F., Manganelli, S.: ‘CAViar: conditional value at risk by quantile regression’, J. Bus. Econ. Stat., Am. Stat. Assoc., 1999, 22, pp. 367381.
    38. 38)
      • 15. Lochert, C., Mauve, M., Fussler, H., et al: ‘Geographic routing in city scenarios’, SIGMOBILE Mob. Comput. Commun. Rev., 2005, 9, (1), pp. 6972.
    39. 39)
      • 14. Fonseca, A., Vazão, T.: ‘Applicability of position-based routing for VANET in highways and urban environment’, J. Netw. Comput. Appl., 2013, 36, (3), pp. 961973.
    40. 40)
      • 35. Bhatt, M., Sharma, S., Luhach, A.K., et al: ‘Nature inspired route optimization in vehicular Ad hoc network’. Proc. of 5th Int. Conf. Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2016.
    41. 41)
      • 36. Memon, I., Ali, Q., Zubedi, A., et al: ‘DPMM: dynamic pseudonym-based multiple mix-zones generation for mobile traveler’, Multimedia Tools Appl., 2017, 76, (22), pp. 2435924388.
    42. 42)
      • 25. Ding, Y., Liu, Y.Z., Gong, X.Y., et al: ‘Road traffic and geography topology based opportunistic routing for VANETs’, J. China Univ. Posts Telecommun., 2014, 21, (4), pp. 3239.
    43. 43)
      • 6. Dong, H., Zhao, X., Qu, L., et al: ‘Multi-hop routing optimization method based on improved ant algorithm for vehicle to roadside network’, J. Bionic Eng., 2014, 11, (3), pp. 490496.
    44. 44)
      • 32. Nzouonta, J., Rajgure, N., Wang, G., et al: ‘VANET routing on city roads using real-time vehicular traffic information’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 36093626.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2018.0002
Loading

Related content

content/journals/10.1049/iet-ifs.2018.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address