http://iet.metastore.ingenta.com
1887

Observations on the truncated differential of SP block ciphers and their applications to mCrypton and CRYPTON V1.0

Observations on the truncated differential of SP block ciphers and their applications to mCrypton and CRYPTON V1.0

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Truncated differential attack (TDA) proposed by Knudsen in Fast Software Encryption 1995 (FSE'95) has been widely used in the analysis of block ciphers. In this study, the authors specifically study the security of SP block ciphers against TDA. In FSE'15, Li et al. introduced a meet-in-the-middle technique to construct truncated differential for Feistel ciphers. They first apply Li's technique to SP block ciphers and get some further results. Second, they introduce the concept of generalised truncated difference to control the diffusion of active S-boxes in the truncated differential. On the basis of these, two 5-round truncated differential distinguishers for mCrypton and CRYPTON V1.0 have been constructed. Using these two 5-round distinguishers, they present the first 8-round DA on mCrypton-64 and improve the former best TDA on CRYPTON V1.0 by one round.

References

    1. 1)
      • 1. Knudsen, L.R.: ‘Truncated and higher order differentials’. Fast Software Encryption (FSE), Heidelberg, 1994 (LNCS, 1008), pp. 196211.
    2. 2)
      • 2. Biham, E., Shamir, A.: ‘Differential cryptanalysis of DES-like cryptosystems’. CRYPTO, Heidelberg, 1990 (LNCS, 537), pp. 221.
    3. 3)
      • 3. Li, L., Jia, K., Wang, X., et al: ‘Meet-in-the-middle technique for truncated differential and its applications to CLEFIA and Camellia’. Fast Software Encryption (FSE), Heidelberg, 2015 (LNCS, 9054), pp. 4870.
    4. 4)
      • 4. Shirai, T., Shibutani, K., Akishita, T., et al: ‘The 128 bit block-cipher CLEFIA (extended abstract)’. Fast Software Encryption (FSE), Heidelberg, 2007 (LNCS, 4593), pp. 181195.
    5. 5)
      • 5. Aoki, K., Ichikawa, T., Kanda, M., et al: ‘Camellia: a 128 bit block cipher suitable for multiple platforms – design and analysis’. SAC, Heidelberg, 2000 (LNCS, 2012), pp. 3956.
    6. 6)
      • 6. Derbez, P., Fouque, P.: ‘Exhausting Demirci–Selçuk meet-in-the-middle attacks against reduced-round AES’. Fast Software Encryption (FSE), 2013, Heidelberg (LNCS, 8424), pp. 541560.
    7. 7)
      • 7. Lim, C., Korkishko, T.: ‘Mcrypton – a lightweight block cipher for security of low-cost RFID tags and sensors’. WISA, Heidelberg, 2005 (LNCS, 3786), pp. 243258.
    8. 8)
      • 8. Lim, C.: ‘A revised version of Crypton – Crypton version 1.0.’. Fast Software Encryption (FSE), Heidelberg, 1999 (LNCS, 1636), pp. 3145.
    9. 9)
      • 9. Kim, J., Hong, S., Lee, S., et al: ‘Truncated differential attacks on 8-round CRYPTON’. International Conference on Inventive Systems and Control (ICISC), Heidelberg, 2003 (LNCS, 2971), pp. 446456.
    10. 10)
      • 10. Hao, Y., Bai, D., Li, L.: ‘A meet-in-the-middle attack on round-reduced mCrypton using the differential enumeration technique’. Network and System Security (NSS), Heidelberg, 2014 (LNCS, 8792), pp. 166183.
    11. 11)
      • 11. Jeong, K., Kang, H., Lee, C., et al: ‘Weakness of lightweight block ciphers mCrypton and led against biclique cryptanalysis’, Peer-to-Peer Netw. Appl., 2013, 8, pp. 117.
    12. 12)
      • 12. D'Halluin, C., Bijnens, G., Rijmen, V., et al: ‘Attack on six rounds of Crypton’. Fast Software Encryption (FSE), Heidelberg, 1999 (LNCS, 1636), pp. 4659, accessed on 18th Jan 2018.
    13. 13)
      • 13. Cheon, J., Kim, M., Kim, K., et al: ‘Improved impossible differential cryptanalysis of Rijndael and Crypton’. Int. Conf. Inventive Systems and Control (ICISC), Heidelberg, 2001 (LNCS, 2288), pp. 3949.
    14. 14)
      • 14. Lin, L., Wu, W.L., Wang, Y.F., et al: ‘General model of the single-key meet-in-the-middle distinguisher on the word-oriented block cipher’. Int. Conf. Inventive Systems and Control (ICISC), Heidelberg, 2013 (LNCS, 8565), pp. 203223.
    15. 15)
      • 15. Liu, Ch., Liao, F.C., Wei, H.R.: ‘A meet-in-the-middle attack on reduced-round Crypton’, Softw. Eng. Appl., 2012, 32, (4), pp. 1723. (in Chinese).
    16. 16)
      • 16. Hao, Y.L.: ‘Improved meet-in-the-middle attacks on round-reduced Crypton-256’. Available at http://eprint.iacr.org/2016/267.
    17. 17)
      • 17. Derbez, P., Fouque, P-A.: ‘Automatic search of meet-in-the-middle and impossible differential attacks’. CRYPTO, Heidelberg, 2016 (LNCS, 9815), pp. 157184.
    18. 18)
      • 18. Mohsen, S., Mohammad, D., Hamid, M.: ‘Non-isomorphic biclique cryptanalysis of full-round crypton’, Comput. Stand. Interfaces, 2015, 41, pp. 7278.
    19. 19)
      • 19. Lim, C.: ‘CRYPTON: a new 128 bit block cipher. AES Proposal’, 1998.
    20. 20)
      • 20. Dunkelman, O., Keller, N., Shamir, A.: ‘Improved single-key attacks on 8-round AES-192 and AES-256’. ASIACRYPT, Heidelberg, 2010 (LNCS, 6477), pp. 158176.
    21. 21)
      • 21. Anne, C., Thomas, F., Henri, G., et al: ‘Multiple differential cryptanalysis of round-reduced PRINCE’. Fast Software Encryption (FSE), Heidelberg, 2014 (LNCS, 8540), pp. 591610.
    22. 22)
      • 22. Lin, L., Wu, W., Zhang, Y.: ‘Automatic search for key-bridging technique: applications to LBlock and TWINE’. Fast Software Encryption (FSE), Heidelberg, 2016 (LNCS, 9783), pp. 247267.
    23. 23)
      • 23. Wikipedia. Invariant Subspace –Wikipedia, The Free Encyclopedia (2015). Available at https://en.wikipedia.org/wiki/Invariant_subspace, accessed on 18th Jan 2018.
    24. 24)
      • 24. Zhijie, C.: ‘Higher algebra and analytic geometry’ (Springer, Berlin, 2001) (in Chinese).
    25. 25)
      • 25. Selçuk, A.A.: ‘On probability of success in linear and differential cryptanalysis’, J. Cryptol., 2008, 21, (1), pp. 131147.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2017.0196
Loading

Related content

content/journals/10.1049/iet-ifs.2017.0196
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address