Generalisation of Hadamard matrix to generate involutory MDS matrices for lightweight cryptography

Generalisation of Hadamard matrix to generate involutory MDS matrices for lightweight cryptography

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors generalise Hadamard matrix over and propose a new form of Hadamard matrix, which they call generalised Hadamard (GHadamard) matrix. Then, they focus on generating lightweight (involutory) maximum distance separable (MDS) matrices. They also extend this idea to any matrix form, where k is not necessarily a power of 2. The new matrix form, GHadamard matrix, is used to generate new involutory MDS matrices over and , and involutory/non-involutory MDS matrices over by considering the minimum exclusive OR (XOR) count, which is a metric defined to estimate the hardware implementation cost. In this context, they improve the best-known results of XOR counts for involutory/non-involutory MDS matrices over .


    1. 1)
      • 1. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Tech. J., 1949, 28, pp. 656715.
    2. 2)
      • 2. Daemen, J., Rijmen, V.: ‘The design of Rijndael, AES – the advanced encryption standard’ (Springer, 2002).
    3. 3)
      • 3. Youssef, A.M., Mister, S., Tavares, S.E.: ‘On the design of linear transformation for substitution-permutation encryption networks’. Proc. Selected Areas in Cryptography (SAC'97), 1997, pp. 4048.
    4. 4)
      • 4. Lacan, J., Fimes, J.: ‘Systematic MDS erasure codes based on Vandermonde matrices’, IEEE Trans. Commun. Lett., 2004, 8, pp. 570572.
    5. 5)
      • 5. Sajadieh, M., Dakhilalian, M., Mala, H., et al: ‘On construction of involutory MDS matrices from Vandermonde matrices in GF(2q)’, Des. Codes Cryptogr., 2012, 64, pp. 287308.
    6. 6)
      • 6. Guo, J., Peyrin, T., Poschmann, A.: ‘The PHOTON family of lightweight hash functions’. CRYPTO 2011, 2011 (LNCS, 6841), pp. 222239.
    7. 7)
      • 7. Gupta, K.C., Ray, I.G.: ‘On constructions of MDS matrices from companion matrices for lightweight cryptography’. CD-ARES 2013, Workshops: MoCrySEn, 2013 pp. 2943.
    8. 8)
      • 8. Augot, D., Finiasz, M.: ‘Direct construction of recursive MDS diffusion layers using shortened BCH codes’. Fast Software Encryption (FSE 2014), 2014 (LNCS, 8540), pp. 317.
    9. 9)
      • 9. Li, Y., Wang, M.: ‘On the construction of lightweight circulant involutory MDS matrices’. Fast Software Encryption (FSE 2016), 2016 (LNCS, 9783), pp. 121139.
    10. 10)
      • 10. Liu, M., Sim, S.M.: ‘Lightweight MDS generalized circulant matrices’. Fast Software Encryption (FSE 2016), 2016 (LNCS, 9783), pp. 101120.
    11. 11)
      • 11. Sarkar, S., Syed, H.: ‘Lightweight diffusion layer: importance of Toeplitz matrices’, IACR Trans. Symmetric Cryptol., 2016, 2016, (1), pp. 95113.
    12. 12)
      • 12. Sarkar, S., Syed, H.: ‘Analysis of Toeplitz MDS matrices’. ACISP 2017, 2017 (LNCS, 10343), pp. 318.
    13. 13)
      • 13. Khoo, K., Peyrin, T., Poschmann, A.Y., et al: ‘FOAM: searching for hardware-optimal SPN structures and components with a fair comparison’. Cryptographic Hardware and Embedded Systems (CHES 2014), 2014 (LNCS, 8731), pp. 433450.
    14. 14)
      • 14. Sim, S.M., Khoo, K., Oggier, F., et al: ‘Lightweight MDS involution matrices’. Fast Software Encryption (FSE 2015), 2015 (LNCS, 9054), pp. 471493.
    15. 15)
      • 15. MacWilliams, F.J., Sloane, N.J.A.: ‘The theory of error-correcting codes’ (North Holland Publishing Co., North-Holland, Amsterdam, 1977).
    16. 16)
      • 16. Sarkar, S., Sim, S.M.: ‘A deeper understanding of the XOR count distribution in the context of lightweight cryptography’. AFRICACRYPT 2016, 2016 (LNCS, 9646), pp. 167182.
    17. 17)
      • 17. Junod, P., Vaudenay, S.: ‘Perfect diffusion primitives for block ciphers’. Selected Areas in Cryptography (SAC 2004), 2004 (LNCS, 3357), pp. 8499.

Related content

This is a required field
Please enter a valid email address