http://iet.metastore.ingenta.com
1887

Provably secure verifiable multi-stage secret sharing scheme based on monotone span program

Provably secure verifiable multi-stage secret sharing scheme based on monotone span program

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In multi-secret sharing (MSS) scheme, a dealer distributes multiple secrets among a set of participants, each of them according to an access structure. In this study, the authors propose a novel linear MSS with computational verifiability that provide many functions for practical applications in comparison with the previous works focusing on MSS schemes in the general scenario. This scheme has the same advantages as previous schemes; moreover, it is verifiable and multi-use secret sharing. Furthermore, in this scheme the secret reconstruction is according to the dealer's preassigned order. Also, they prove the security of the authors’ scheme in the standard model.

References

    1. 1)
      • A. Shamir .
        1. Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 22, (11), pp. 612613.
        . Commun. ACM , 11 , 612 - 613
    2. 2)
      • G.R. Blakley .
        2. Blakley, G.R.: ‘Safeguarding cryptographic keys’. Proc. AFIPS 1979 National Computer Conf., June 1979, pp. 313317.
        . Proc. AFIPS 1979 National Computer Conf. , 313 - 317
    3. 3)
      • A. Das , A. Adhikari .
        3. Das, A., Adhikari, A.: ‘An efficient multi-use multi-secret sharing scheme based on hash function’, Appl. Math. Lett., 2010, 23, pp. 993996.
        . Appl. Math. Lett. , 993 - 996
    4. 4)
      • C.-H. Hsu , Q. Cheng , X. Tang .
        4. Hsu, C.-H., Cheng, Q., Tang, X., et al: ‘An ideal multi-secret sharing scheme based on MSP’, Inf. Sci., 2011, 181, pp. 14031409.
        . Inf. Sci. , 1403 - 1409
    5. 5)
      • J. Zhang , F. Zhang .
        5. Zhang, J., Zhang, F.: ‘Information-theoretical secure verifiable secret sharing with vector space access structures over bilinear groups and its application’, Future Gener. Comput. Syst., 2015, 52, pp. 109115.
        . Future Gener. Comput. Syst. , 109 - 115
    6. 6)
      • M. Ben-Or , Sh. Goldwasser , A. Wigderson .
        6. Ben-Or, M., Goldwasser, Sh., Wigderson, A.: ‘Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract)’. Symp. on Theory of Computing (STOC), 1988, pp. 110.
        . Symp. on Theory of Computing (STOC) , 1 - 10
    7. 7)
      • D. Chaum , C. Crepeau , I. Damgard .
        7. Chaum, D., Crepeau, C., Damgard, I.: ‘Multiparty unconditionally secure protocols (extended abstract)’. Symp. on Theory of Computing (STOC), 1988, pp. 1119.
        . Symp. on Theory of Computing (STOC) , 11 - 19
    8. 8)
      • S. Micali .
        8. Micali, S.: ‘Fair public-key cryptosystems’. CRYPTO, 1992, pp. 113138.
        . CRYPTO , 113 - 138
    9. 9)
      • B. Chor , Sh. Goldwasser , S. Micali .
        9. Chor, B., Goldwasser, Sh., Micali, S., et al: ‘Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract)’. Symp. on Foundations of Computer Science (FOCS), 1985, pp. 383395.
        . Symp. on Foundations of Computer Science (FOCS) , 383 - 395
    10. 10)
      • J. Herranz , A. Ruiz , G. Sáez .
        10. Herranz, J., Ruiz, A., Sáez, G.: ‘Sharing many secrets with computational provable security’, Inf. Process. Lett., 2013, 113, pp. 572579.
        . Inf. Process. Lett. , 572 - 579
    11. 11)
      • Z. Eslami , S. Kabiri Rad .
        11. Eslami, Z., Kabiri Rad, S.: ‘A new verifiable multi-secret sharing scheme based on bilinear maps’, Wirel. Pers. Commun., 2012, 63, pp. 459467.
        . Wirel. Pers. Commun. , 459 - 467
    12. 12)
      • Y.-X. Liu .
        12. Liu, Y.-X.: ‘Efficient t-cheater identifiable (k, n) secret-sharing scheme for t(k2)/2’, IET Inf. Sec., 2014, 8, pp. 3741.
        . IET Inf. Sec. , 37 - 41
    13. 13)
      • S. Mashhadi , M. Hadian .
        13. Mashhadi, S., Hadian, M.: ‘Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion and LFSR public-key cryptosystem’, Inf. Sci., 2015, 294, pp. 3140.
        . Inf. Sci. , 31 - 40
    14. 14)
      • J. Shao , Z.-F. Cao .
        14. Shao, J., Cao, Z.-F.: ‘A new efficient (t, n) verifiable multi-secret sharing (VMSS) based on YCH scheme’, Appl. Math. Comput., 2005, 168, pp. 135140.
        . Appl. Math. Comput. , 135 - 140
    15. 15)
      • M. Tadayon , H. Khanmohammadi , M. Haghighi .
        15. Tadayon, M., Khanmohammadi, H., Haghighi, M.: ‘Dynamic and verifiable multi-secret sharing scheme based on Hermite interpolation and bilinear maps’, IET Inf. Sec., 2015, 9, pp. 234239.
        . IET Inf. Sec. , 234 - 239
    16. 16)
      • T.-S. Wu , Y.-M. Tseng .
        16. Wu, T.-S., Tseng, Y.-M.: ‘Publicly verifiable multi-secret sharing scheme from bilinear pairings’, IET Inf. Sec., 2013, 7, pp. 239246.
        . IET Inf. Sec. , 239 - 246
    17. 17)
      • C. Lin , L. Harn .
        17. Lin, C., Harn, L.: ‘Unconditionally secure verifiable secret sharing scheme’, AISS: Adv. Inf. Sci. Serv. Sci., 2012, 4, pp. 514518.
        . AISS: Adv. Inf. Sci. Serv. Sci. , 514 - 518
    18. 18)
      • C. Ma , X. Ding .
        18. Ma, C., Ding, X.: ‘Proactive verifiable linear integer secret sharing scheme’. Information and Communications Security, 2009 (LNCS, 5927), pp. 439448.
        . Information and Communications Security , 439 - 448
    19. 19)
      • D.-R. Stinson , R. Wei .
        19. Stinson, D.-R., Wei, R.: ‘Unconditionally secure proactive secret sharing scheme with combinatorial structures, selected areas in cryptography’, Selected Areas in Cryptography: SAC'99, 2000 (LNCS, 1758), pp. 200214.
        . Selected Areas in Cryptography: SAC'99 , 200 - 214
    20. 20)
      • S. Mashhadi .
        20. Mashhadi, S.: ‘Computationally-secure multiple secret sharing: models, schemes, and formal security analysis’, The ISC Int. J. Inf. Sec., 2015, 7, pp. 110.
        . The ISC Int. J. Inf. Sec. , 1 - 10
    21. 21)
      • L.-J. Pang , Y.-M. Wang .
        21. Pang, L.-J., Wang, Y.-M.: ‘A new (t, n) multi-secret sharing scheme based on Shamir's secret sharing’, Appl. Math. Comput., 2005, 167, pp. 840848.
        . Appl. Math. Comput. , 840 - 848
    22. 22)
      • T.-Y. Chang , M.-S. Hwang , W.-P. Yang .
        22. Chang, T.-Y., Hwang, M.-S., Yang, W.-P.: ‘A new multi-stage secret sharing scheme using one-way function’, ACM SIGOPS Oper. Syst., 2005, 39, pp. 4855.
        . ACM SIGOPS Oper. Syst. , 48 - 55
    23. 23)
      • M. Fatemi , R. Ghasemi , T. Eghlidos .
        23. Fatemi, M., Ghasemi, R., Eghlidos, T., et al: ‘Efficient multistage secret sharing scheme using bilinear map’, IET Inf. Sec., 2014, 8, pp. 224229.
        . IET Inf. Sec. , 224 - 229
    24. 24)
      • L. Harn .
        24. Harn, L.: ‘Comment multistage secret sharing based on one-way function’, Electron. Lett., 1995, 31, p p. 262.
        . Electron. Lett. , 262
    25. 25)
      • J. He , E. Dawson .
        25. He, J., Dawson, E.: ‘Multistage secret sharing based on one-way function’, Electron. Lett., 1994, 30, pp. 15911592.
        . Electron. Lett. , 1591 - 1592
    26. 26)
      • H.-X. Li , C.-T. Cheng , L.-J. Pang .
        26. Li, H.-X., Cheng, C.-T., Pang, L.-J.: ‘An improved multi-stage (t, n)-threshold secret sharing scheme’, WAIM, 2005 (LNCS, 3739), pp. 267274.
        . WAIM , 267 - 274
    27. 27)
      • Y. Liu .
        27. Liu, Y.: ‘Linear (k, n) secret sharing scheme with cheating detection’, Sec. Commun. Netw., 2016, 9, pp. 21152121.
        . Sec. Commun. Netw. , 2115 - 2121
    28. 28)
      • S. Mashhadi .
        28. Mashhadi, S.: ‘How to fairly share multiple secrets stage by stage’, Wirel. Pers. Commun., 2016, 90, pp. 93107.
        . Wirel. Pers. Commun. , 93 - 107
    29. 29)
      • C.-H. Hsu , L. Harn , G. Cui .
        29. Hsu, C.-H., Harn, L., Cui, G.: ‘An ideal multi-secret sharing scheme based on connectivity of graphs’, Wirel. Pers. Commun., 2014, 77, pp. 383394.
        . Wirel. Pers. Commun. , 383 - 394
    30. 30)
      • C.-H. Hsu , G. Cui , Q. Cheng .
        30. Hsu, C.-H., Cui, G., Cheng, Q., et al: ‘A novel linear multi-secret sharing scheme for group communication in wireless mesh networks’, Netw. Comput. Appl., 2011, 34, pp. 464468.
        . Netw. Comput. Appl. , 464 - 468
    31. 31)
      • M. Liu , L. Xiao , Z. Zhang .
        31. Liu, M., Xiao, L., Zhang, Z.: ‘Linear multi-secret sharing schemes based on multi-party computation’, Finite Fields Appl., 2006, 12, pp. 704713.
        . Finite Fields Appl. , 704 - 713
    32. 32)
      • M. Karchmer , A. Wigderson .
        32. Karchmer, M., Wigderson, A.: ‘On span programs’. Proc. of the Eighth Annual Conf. on Structure in Complexity, San Diego, CA, 1993, pp. 102111.
        . Proc. of the Eighth Annual Conf. on Structure in Complexity , 102 - 111
    33. 33)
      • S. Mashhadi .
        33. Mashhadi, S.: ‘Secure publicly verifiable and proactive secret sharing schemes with general access structure’, Inf. Sci., 2017, 378, pp. 99108.
        . Inf. Sci. , 99 - 108
    34. 34)
      • R. Cramer , I. Damgard , U. Maurer .
        34. Cramer, R., Damgard, I., Maurer, U.: ‘General secure multi-party computation from any linear secret sharing scheme’. Proc. of EUROCRYPT, 2000 (LNCS, 1807), pp. 316334, Full version available from IACR eprint archive.
        . Proc. of EUROCRYPT , 316 - 334
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2017.0111
Loading

Related content

content/journals/10.1049/iet-ifs.2017.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address