http://iet.metastore.ingenta.com
1887

Outsourcing secret sharing scheme based on homomorphism encryption

Outsourcing secret sharing scheme based on homomorphism encryption

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Secret sharing is an important component of cryptography protocols and has a wide range of practical applications. However, the existing secret sharing schemes cannot apply to computationally weak devices and cannot efficiently guarantee fairness. In this study, a novel outsourcing secret sharing scheme is proposed. In the setting of outsourcing secret sharing, clients only need a small amount of decryption and verification operations, while the expensive reconstruction computation and verifiable computation can be outsourced to cloud service providers (CSP). The scheme does not require complex interactive argument or zero-knowledge proof. The malicious behaviour of clients and CSP can be detected in time. Moreover, the CSP cannot get any useful information about the secret, and it is fair for every client to obtain the secret. At the end of this study, the authors prove the security of the proposed scheme and compare it with other secret sharing schemes.

References

    1. 1)
      • A. Shamir .
        1. Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 22, (11), pp. 612613.
        . Commun. ACM , 11 , 612 - 613
    2. 2)
      • G.R. Blakley .
        2. Blakley, G.R.: ‘Safeguarding cryptographic key’. Proc. Int. Conf. National Computer, New York, USA, 1979, pp. 313317.
        . Proc. Int. Conf. National Computer , 313 - 317
    3. 3)
      • B. Chor , S. Goldwasser , S. Micali .
        3. Chor, B., Goldwasser, S., Micali, S.: ‘Verifiable secret sharing and achieving simultaneity in the presence of faults’. Proc. Int. Conf. 26th IEEE Symp. on Foundations of Computer Science, Berlin, 1985, pp. 383395.
        . Proc. Int. Conf. 26th IEEE Symp. on Foundations of Computer Science , 383 - 395
    4. 4)
      • P. Feldman .
        4. Feldman, P.: ‘A practical scheme for non-interactive verifiable secret sharing’. Proc. Int. Conf. the 28th Symp. on Foundations of Computer Science, Los Angeles, 1987, pp. 427437.
        . Proc. Int. Conf. the 28th Symp. on Foundations of Computer Science , 427 - 437
    5. 5)
      • T.P. Pedersen .
        5. Pedersen, T.P.: ‘Distributed provers with applications to undeniable signatures’. Proc. Int. Conf. Eurocrypt'91, Berlin, 1991, pp. 221238.
        . Proc. Int. Conf. Eurocrypt'91 , 221 - 238
    6. 6)
      • C. Blundo , A. De Santis , U. Vaccaro .
        6. Blundo, C., De Santis, A., Vaccaro, U.: ‘Efficient sharing of many secrets’. Proc. Int. Conf. STACS'93, Berlin, 1993, pp. 692703.
        . Proc. Int. Conf. STACS'93 , 692 - 703
    7. 7)
      • H.Y. Chien , J.K. Jan , Y.M. Tseng .
        7. Chien, H.Y., Jan, J.K., Tseng, Y.M.: ‘A practical multi-secret sharing scheme’, IEICE Trans. Fundam., 2000, E83-A, (12), pp. 26722675.
        . IEICE Trans. Fundam. , 12 , 2672 - 2675
    8. 8)
      • C.C. Yang , T.Y. Chang , M.S. Hwang .
        8. Yang, C.C., Chang, T.Y., Hwang, M.S.: ‘A (t, n) multi-secret sharing scheme’, Appl. Math. Comput., 2004, 151, (2), pp. 483490.
        . Appl. Math. Comput. , 2 , 483 - 490
    9. 9)
      • L.J. Pang , Y.M. Wang .
        9. Pang, L.J., Wang, Y.M.: ‘A new (t, n) multi-secret sharing scheme based on Shamirs secret sharing’, Appl. Math. Comput., 2005, 167, (2), pp. 840848.
        . Appl. Math. Comput. , 2 , 840 - 848
    10. 10)
      • S. Mashhadi , M.H. Dehkordi .
        10. Mashhadi, S., Dehkordi, M.H.: ‘Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion and LFSR public-key cryptosystem’, Inf. Sci., 2015, 294, (2), pp. 3140.
        . Inf. Sci. , 2 , 31 - 40
    11. 11)
      • M.H. Dehkordi , Y. Farzaneh .
        11. Dehkordi, M.H., Farzaneh, Y.: ‘A new verifiable multi-secret sharing scheme realizing adversary structure’, Wirel. Pers. Commun., 2015, 82, (3), pp. 17491758.
        . Wirel. Pers. Commun. , 3 , 1749 - 1758
    12. 12)
      • R. Cramer , I.B. Damgard .
        12. Cramer, R., Damgard, I.B.: ‘Linear secret sharing schemes from error correcting codes and universal hash functions’. Proc. Int. Conf. Cryptology-Eurocrypt, Berlin, 2015, pp. 313336.
        . Proc. Int. Conf. Cryptology-Eurocrypt , 313 - 336
    13. 13)
      • F.Y. Miao , Y. Xiong , X.F. Wang .
        13. Miao, F.Y., Xiong, Y., Wang, X.F.: ‘Randomized component and its application to (t, m, n)-group oriented secret sharing’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (5), pp. 889899.
        . IEEE Trans. Inf. Forensics Sec. , 5 , 889 - 899
    14. 14)
      • H.T. Mohammad , K. Hadi , S.H. Mohammad .
        14. Mohammad, H.T., Hadi, K., Mohammad, S.H.: ‘Dynamic and verifiable multi-secret sharing scheme based on hermite interpolation and bilinear maps’, IET Inf. Sec., 2015, 9, (4), pp. 234239.
        . IET Inf. Sec. , 4 , 234 - 239
    15. 15)
      • J. Halpern , V. Teague .
        15. Halpern, J., Teague, V.: ‘Rational secret sharing and multiparty computation’. Proc. Int. Conf. the 36th Annual ACM Symp. on Theory of Computing, New York, 2004, pp. 623632.
        . Proc. Int. Conf. the 36th Annual ACM Symp. on Theory of Computing , 623 - 632
    16. 16)
      • S. Maleka , S. Amjed , C.P. Rangan .
        16. Maleka, S., Amjed, S., Rangan, C.P.: ‘Rational secret sharing with repeated games’. Proc. Int. Conf. 4th Information Security Practice and Experience Conf., Berlin, 2008, pp. 334346.
        . Proc. Int. Conf. 4th Information Security Practice and Experience Conf. , 334 - 346
    17. 17)
      • Y.L. Tian , J.F. Ma , C.G. Peng .
        17. Tian, Y.L., Ma, J.F., Peng, C.G., et al: ‘Game-theoretic analysis for the secret sharing scheme’, Acta Electron. Sin., 2011, 39, (12), pp. 27902795.
        . Acta Electron. Sin. , 12 , 2790 - 2795
    18. 18)
      • Z.F. Zhang , M.L. Liu .
        18. Zhang, Z.F., Liu, M.L.: ‘Rational secret sharing as extensive games’, Sci. China Inf. Sci., 2013, 56, (3), pp. 113.
        . Sci. China Inf. Sci. , 3 , 1 - 13
    19. 19)
      • Y.L. Tian , C.G. Peng , D.D. Lin .
        19. Tian, Y.L., Peng, C.G., Lin, D.D., et al: ‘Bayesian mechanism for rational secret sharing scheme’, Sci. China Inf. Sci., 2015, 58, (5), pp. 113.
        . Sci. China Inf. Sci. , 5 , 1 - 13
    20. 20)
      • E. Zhang , Y.Q. Cai .
        20. Zhang, E., Cai, Y.Q.: ‘Rational multi-secret sharing scheme in standard point-to-point communication networks’, Int. J. Found. Comput. Sci., 2013, 24, (6), pp. 879897.
        . Int. J. Found. Comput. Sci. , 6 , 879 - 897
    21. 21)
      • C. Gentry .
        21. Gentry, C.: ‘Fully homomorphic encryption using ideal lattices’. Proc. Int. Conf. STOC, 2009.
        . Proc. Int. Conf. STOC
    22. 22)
      • M. van Dijk , S. Gentry , S. Halevi .
        22. van Dijk, M., Gentry, S., Halevi, S., et al: ‘Fully homomorphic encryption over the integers’. Proc. Int. Conf. Eurocrypt, 2010, pp. 2443.
        . Proc. Int. Conf. Eurocrypt , 24 - 43
    23. 23)
      • Z. Brakerski , C. Gentry , V. Vaikuntanathan .
        23. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: ‘(Leveled) fully homomorphic encryption without bootstrapping’. Proc. Int. Conf. ITCS, 2012.
        . Proc. Int. Conf. ITCS
    24. 24)
      • A. Lopez , E. Tromer , V. Vaikuntanathan .
        24. Lopez, A., Tromer, E., Vaikuntanathan, V.: ‘On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption’. Proc. Int. Conf. STOC, 2012.
        . Proc. Int. Conf. STOC
    25. 25)
      • A. Peter , E. Tews , S. Katzenbeisser .
        25. Peter, A., Tews, E., Katzenbeisser, S.: ‘Efficiently outsourcing multiparty computation under multiple keys’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (12), pp. 20462058.
        . IEEE Trans. Inf. Forensics Sec. , 12 , 2046 - 2058
    26. 26)
      • S.D. Gordon , J. Katz , F.H. Liu .
        26. Gordon, S.D., Katz, J., Liu, F.H., et al: ‘Multi-client verifiable computation with stronger security guarantees’. Proc. Int. Conf. TCC, Berlin, 2015, pp. 144168.
        . Proc. Int. Conf. TCC , 144 - 168
    27. 27)
      • K. Chenyutao , A. Hiroaki , K. Junpei .
        27. Chenyutao, K., Hiroaki, A., Junpei, K., et al: ‘Cross-group secret sharing for secure cloud storage service’. Proc. Int. Conf. IMCOM ‘16, 2016.
        . Proc. Int. Conf. IMCOM ‘16
    28. 28)
      • K. Atsushi , T. Shigeaki , S. Hiroyuki .
        28. Atsushi, K., Shigeaki, T., Hiroyuki, S.: ‘Performance evaluation on data management approach for multiple clouds using secret sharing scheme’. IEEE Int. Conf. on Consumer Electronics, 2016, pp. 471473.
        . IEEE Int. Conf. on Consumer Electronics , 471 - 473
    29. 29)
      • E. Zhang , F.H. Li , B. Niu .
        29. Zhang, E., Li, F.H., Niu, B., et al: ‘Server-aided private set intersection based on reputation’, Inf. Sci., 2016, 387, pp. 180194.
        . Inf. Sci. , 180 - 194
    30. 30)
      • J.C. Benaloh .
        30. Benaloh, J.C.: ‘Secret sharing homomorphisms: keeping shares of a secret’. Proc. Int. Conf. CRYPTO'86, Berlin, 1987, pp. 251260.
        . Proc. Int. Conf. CRYPTO'86 , 251 - 260
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2017.0026
Loading

Related content

content/journals/10.1049/iet-ifs.2017.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address