FHE over the integers and modular arithmetic circuits

FHE over the integers and modular arithmetic circuits

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fully homomorphic encryption (FHE) over the integers, as proposed by van Dijk et al. in 2010 and developed in a number of papers afterwards, originally supported the evaluation of Boolean circuits (i.e. mod-2 arithmetic circuits) only. It is easily generalised to the somewhat homomorphic versions of the corresponding schemes to support arithmetic operations modulo Q for any , but bootstrapping those generalised variants into fully homomorphic schemes is not easy. Thus, Nuida and Kurosawa settled an interesting open problem in 2015 by showing that one could in fact construct FHE over the integers with message space for any constant prime Q. As a result of their work, the authors can homomorphically evaluate a mod-Q arithmetic circuit with an FHE scheme over the integers in two different ways: one could either use their scheme with message space directly, or one could first convert the arithmetic circuit to a Boolean one, and then evaluate that converted circuit using an FHE scheme with binary message space. In this study, they compare both approaches and show that the latter is often preferable to the former.


    1. 1)
      • 1. Rivest, R.L., Adleman, L.M., Dertouzos, M.L.: ‘On data banks and privacy homomorphisms’, in DeMillo, R.A. (Ed): ‘Foundations of secure Computation’ (Academic Press, 1978), pp. 169180.
    2. 2)
      • 2. Gentry, C.: ‘Fully homomorphic encryption using ideal lattices’. STOC, 2009, pp. 169178.
    3. 3)
      • 3. Gentry, C.: ‘A fully homomorphic encryption scheme’ (Stanford University, CA, 2009),
    4. 4)
      • 4. van Dijk, M., Gentry, C., Halevi, S., et al: ‘Fully homomorphic encryption over the integers’. EUROCRYPT, 2010 (LNCS, 6110), pp. 2443.
    5. 5)
      • 5. Coron, J.S., Mandal, A., Naccache, D., et al: ‘Fully homomorphic encryption over the integers with shorter public keys’. CRYPTO, 2011 (LNCS, 6841), pp. 487504.
    6. 6)
      • 6. Coron, J.S., Naccache, D., Tibouchi, M.: ‘Public key compression and modulus switching for fully homomorphic encryption over the integers’. EUROCRYPT, 2012 (LNCS, 7237), pp. 446464.
    7. 7)
      • 7. Cheon, J.H., Coron, J.S., Kim, J., et al: ‘Batch fully homomorphic encryption over the integers’. EUROCRYPT, 2013 (LNCS, 7881), pp. 315335.
    8. 8)
      • 8. Coron, J., Lepoint, T., Tibouchi, M.: ‘Scale-invariant fully homomorphic encryption over the integers’. PKC, 2014 (LNCS, 8383), pp. 311328.
    9. 9)
      • 9. Cheon, J.H., Stehlé, D.: ‘Fully homomorphic encryption over the integers revisited’. EUROCRYPT, 2015 (LNCS, 9056), pp. 513536.
    10. 10)
      • 10. Pisa, P.S., Abdalla, M., Duarte, O.C.M.B.: ‘Somewhat homomorphic encryption scheme for arithmetic operations on large integers’. GIIS, 2012, pp. 18.
    11. 11)
      • 11. von zur Gathen, J., Seroussi, G.: ‘Boolean circuits versus arithmetic circuits’, Inf. Comput., 1991, 91, (1), pp. 142154.
    12. 12)
      • 12. Nuida, K., Kurosawa, K.: ‘(Batch) fully homomorphic encryption over integers for non-binary message spaces’. EUROCRYPT, 2015 (LNCS, 9056), pp. 537555.
    13. 13)
      • 13. Kim, E., Tibouchi, M.: ‘FHE over the integers and modular arithmetic circuits’. CANS, 2016 (LNCS, 10052), pp. 435450.
    14. 14)
      • 14. Fürer, M.: ‘Faster integer multiplication’, SIAM J. Comput., 2009, 39, (3), pp. 9791005.
    15. 15)
      • 15. Harvey, D., van der Hoeven, J., Lecerf, G.: ‘Even faster integer multiplication’, J. Complexity, 2016, 36, pp. 130.
    16. 16)
      • 16. Schönhage, D.D.A., Strassen, V.: ‘Schnelle multiplication Grosser Zahlen’, Computing, 1971, 7, (3-4), pp. 281292.
    17. 17)
      • 17. Savage, J.E.: ‘Models of computation’, Exploring the Power of Computing, 1998.

Related content

This is a required field
Please enter a valid email address