http://iet.metastore.ingenta.com
1887

Defending shilling attacks in recommender systems using soft co-clustering

Defending shilling attacks in recommender systems using soft co-clustering

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Shilling attacks have been a significant vulnerability to collaborative filtering based recommender systems recently. There are various studies focusing on detecting shilling attack users and developing robust recommendation algorithms against shilling attacks. Although many studies have been devoted in this area, few of them use soft co-clustering and consider both labelled and unlabelled user profiles. In this work, the authors explore the benefits of combining soft co-clustering algorithm with user propensity similarity method and present a soft co-clustering with propensity similarity model or CCPS for short, to detect shilling attacks. Then they perform experiments using MovieLens dataset and Jester dataset to analyse it with respect to shilling attack detection to demonstrate the effectiveness of CCPS model in detecting traditional and hybrid shilling attacks and enhance the robustness of recommender systems.

References

    1. 1)
      • 1. Cosley, D., Lam, S.K., Albert, I., et al: ‘Is seeing believing? How recommender system interfaces affect users’ opinions’. ACM SIGCHI Int. Conf. on Human Factors in Computing Systems, Florida, USA, April 2003, pp. 585592.
    2. 2)
      • 2. Breese, J.S., Heckerman, D., Kadie, C.: ‘Empirical analysis of predictive algorithms for collaborative filtering’. 14th Conf. on Uncertainty in Artificial Intelligence, Madison, WI, July 1998, pp. 4352.
    3. 3)
      • 3. Deshpande, M., Karypis, G.: ‘Item-based top-n recommendation algorithms’, ACM Trans. Inf. Syst., 2007, 22, (1), pp. 143177.
    4. 4)
      • 4. Lam, S.K., Riedl, J.: ‘Shilling recommender systems for fun and profit’. Proc. Int. Conf. World Wide Web (WWW'04), New York, USA, May 2004, pp. 393402.
    5. 5)
      • 5. Mehta, B., Hofmann, T., Fankhauser, P.: ‘Lies and propaganda: detecting spam users in collaborative filtering’. Proc. Int. Conf. Intelligent User Interfaces, Honolulu, HI, USA, January 2007, pp. 1421.
    6. 6)
      • 6. Bhaumik, R., Williams, C., Mobasher, B., et al: ‘Securing collaborative filtering against malicious attacks through anomaly detection’. 4th Workshop on Intelligent Techniques for Web Personalization (ITWP'06), Boston, MA, USA, July 2006.
    7. 7)
      • 7. Mobasher, B., Burke, R., Bhaumik, R., et al: ‘Attacks and remedies in collaborative recommendation’, IEEE Intell. Syst., 2007, 22, (3), pp. 5663.
    8. 8)
      • 8. Chirita, P., Nejdl, W., Zamfir, C.: ‘Preventing shilling attacks in online recommender systems’. Proc. Int. Conf. 7th Annual ACM Int. Workshop on Web Information and Data Management, Washington, DC, USA, November 2005, pp. 6774.
    9. 9)
      • 9. Mehta, B.: ‘Unsupervised shilling detection for collaborative filtering’. Proc. Int. Conf. Artificial Intelligence, Vancouver, BC, July 2007, pp. 14021407.
    10. 10)
      • 10. Su, X.F., Zeng, H.J., Chen, Z.: ‘Finding group shilling in recommendation system’. Proc. Int. Conf. World Wide Web, Chiba, Japan, May 2005, pp. 960961.
    11. 11)
      • 11. Mehta, B., Nejdl, W.: ‘Unsupervised strategies for shilling detection and robust collaborative filtering’, User Model. User-Adapt. Interact., 2009, 19, (1-2), pp. 6597.
    12. 12)
      • 12. Wu, Z., Cao, J., Mao, B., et al: ‘Semi-SAD: applying semi-supervised learning to shilling attack detection’. Proc. Int. Conf. Recommender Systems (RecSys2011), Chicago, IL, USA, October 2011, pp. 289292.
    13. 13)
      • 13. Zhang, X.-L., Lee, T.M.D., Pitsilis, G.: ‘Securing recommender systems against shilling attacks using social-based clustering’, J. Comput. Sci. Technol., 2013, 28, (4), pp. 616624.
    14. 14)
      • 14. Chakraborty, P., Karforma, S.: ‘Detection of Profile-injection attacks in recommender systems using outlier analysis’, Proc. Technol., 2013, 10, pp. 963969.
    15. 15)
      • 15. Hartigan, J.A.: ‘Direct clustering of a data matrix’, J. Am. Stat. Assoc., 1972, 67, (337), pp. 123129.
    16. 16)
      • 16. Wang, P., Domeniconi, C., Laskey, K.B.: ‘Latent Dirichlet Bayesian co-clustering’. Machine Learning and Knowledge Discovery in Databases, 2009, pp. 522537.
    17. 17)
      • 17. Shan, H., Banerjee, A.: ‘Bayesian co-clustering’. Proc. Int. Conf. Data Mining, Pisa, Italy, December 2008, pp. 530539.
    18. 18)
      • 18. McDonald, J.B., Xu, Y.J.: ‘A generalization of the beta distribution with applications’, J. Econometrics, 1995, 66, (1), pp. 133152.
    19. 19)
      • 19. Blei, D., Ng, A., Jordan, M.: ‘Latent Dirichlet allocation’, J. Mach. Learn. Res., 2003, 3, (Jan), pp. 9931022.
    20. 20)
      • 20. Banerjee, A., Merugu, S., Dhillon, I., et al: ‘Clustering with Bregman divergences’, J. Mach. Learn. Res., 2005, 6, (Oct), pp. 17051749.
    21. 21)
      • 21. Chen, G., Wang, F., Zhang, C.: ‘Collaborative filtering using orthogonal nonnegative matrix tri-factorization’, Inf. Process. Manag., 2009, 45, (3), pp. 368379.
    22. 22)
      • 22. Banerjee, A., Shan, H.: ‘Latent Dirichlet conditional Naive-Bayes models’. Proc. Int. Conf. Data Mining, Washington, DC, USA, October 2007, pp. 421426.
    23. 23)
      • 23. MovieLens’, http://www.grouplens.org/datasets/movielens/, accessed 23 July 2016.
    24. 24)
      • 24. Jester’, http://eigentaste.berkeley.edu/dataset/, accessed 23 July 2016.
    25. 25)
      • 25. Aggarwal, D., Merugu, S.: ‘Predictive discrete latent factor models for large scale dyadic data’. Proc. Int. Conf. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, America, 2007, pp. 2635.
    26. 26)
      • 26. Hurley, N., Cheng, Z., Zhang, M.: ‘Statistical attack detection’. Proc. Int. Conf. Recommender Systems (RecSys'09), New York, USA, October 2009, pp. 149156.
    27. 27)
      • 27. O'Mahony, M., Hurley, N., Kushmerick, N., et al: ‘Collaborative recommendation: a robustness analysis’, ACM Trans. Internet Technol., 2004, 4, (4), pp. 344377.
    28. 28)
      • 28. Williams, C.: ‘Profile injection attack detection for securing collaborative recommender systems’. DePaul University CTI Technical Report, 2006, pp. 147.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0345
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address