access icon free Defending shilling attacks in recommender systems using soft co-clustering

Shilling attacks have been a significant vulnerability to collaborative filtering based recommender systems recently. There are various studies focusing on detecting shilling attack users and developing robust recommendation algorithms against shilling attacks. Although many studies have been devoted in this area, few of them use soft co-clustering and consider both labelled and unlabelled user profiles. In this work, the authors explore the benefits of combining soft co-clustering algorithm with user propensity similarity method and present a soft co-clustering with propensity similarity model or CCPS for short, to detect shilling attacks. Then they perform experiments using MovieLens dataset and Jester dataset to analyse it with respect to shilling attack detection to demonstrate the effectiveness of CCPS model in detecting traditional and hybrid shilling attacks and enhance the robustness of recommender systems.

Inspec keywords: security of data; pattern clustering; recommender systems

Other keywords: shilling attacks; co-clustering with propensity similarity model; user propensity similarity method; recommender systems; CCPS; soft co-clustering algorithm

Subjects: Data security; Information networks

References

    1. 1)
      • 22. Banerjee, A., Shan, H.: ‘Latent Dirichlet conditional Naive-Bayes models’. Proc. Int. Conf. Data Mining, Washington, DC, USA, October 2007, pp. 421426.
    2. 2)
      • 9. Mehta, B.: ‘Unsupervised shilling detection for collaborative filtering’. Proc. Int. Conf. Artificial Intelligence, Vancouver, BC, July 2007, pp. 14021407.
    3. 3)
      • 25. Aggarwal, D., Merugu, S.: ‘Predictive discrete latent factor models for large scale dyadic data’. Proc. Int. Conf. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, America, 2007, pp. 2635.
    4. 4)
      • 13. Zhang, X.-L., Lee, T.M.D., Pitsilis, G.: ‘Securing recommender systems against shilling attacks using social-based clustering’, J. Comput. Sci. Technol., 2013, 28, (4), pp. 616624.
    5. 5)
      • 18. McDonald, J.B., Xu, Y.J.: ‘A generalization of the beta distribution with applications’, J. Econometrics, 1995, 66, (1), pp. 133152.
    6. 6)
      • 19. Blei, D., Ng, A., Jordan, M.: ‘Latent Dirichlet allocation’, J. Mach. Learn. Res., 2003, 3, (Jan), pp. 9931022.
    7. 7)
      • 7. Mobasher, B., Burke, R., Bhaumik, R., et al: ‘Attacks and remedies in collaborative recommendation’, IEEE Intell. Syst., 2007, 22, (3), pp. 5663.
    8. 8)
      • 14. Chakraborty, P., Karforma, S.: ‘Detection of Profile-injection attacks in recommender systems using outlier analysis’, Proc. Technol., 2013, 10, pp. 963969.
    9. 9)
      • 15. Hartigan, J.A.: ‘Direct clustering of a data matrix’, J. Am. Stat. Assoc., 1972, 67, (337), pp. 123129.
    10. 10)
      • 23. MovieLens’, http://www.grouplens.org/datasets/movielens/, accessed 23 July 2016.
    11. 11)
      • 2. Breese, J.S., Heckerman, D., Kadie, C.: ‘Empirical analysis of predictive algorithms for collaborative filtering’. 14th Conf. on Uncertainty in Artificial Intelligence, Madison, WI, July 1998, pp. 4352.
    12. 12)
      • 16. Wang, P., Domeniconi, C., Laskey, K.B.: ‘Latent Dirichlet Bayesian co-clustering’. Machine Learning and Knowledge Discovery in Databases, 2009, pp. 522537.
    13. 13)
      • 20. Banerjee, A., Merugu, S., Dhillon, I., et al: ‘Clustering with Bregman divergences’, J. Mach. Learn. Res., 2005, 6, (Oct), pp. 17051749.
    14. 14)
      • 1. Cosley, D., Lam, S.K., Albert, I., et al: ‘Is seeing believing? How recommender system interfaces affect users’ opinions’. ACM SIGCHI Int. Conf. on Human Factors in Computing Systems, Florida, USA, April 2003, pp. 585592.
    15. 15)
      • 28. Williams, C.: ‘Profile injection attack detection for securing collaborative recommender systems’. DePaul University CTI Technical Report, 2006, pp. 147.
    16. 16)
      • 17. Shan, H., Banerjee, A.: ‘Bayesian co-clustering’. Proc. Int. Conf. Data Mining, Pisa, Italy, December 2008, pp. 530539.
    17. 17)
      • 3. Deshpande, M., Karypis, G.: ‘Item-based top-n recommendation algorithms’, ACM Trans. Inf. Syst., 2007, 22, (1), pp. 143177.
    18. 18)
      • 6. Bhaumik, R., Williams, C., Mobasher, B., et al: ‘Securing collaborative filtering against malicious attacks through anomaly detection’. 4th Workshop on Intelligent Techniques for Web Personalization (ITWP'06), Boston, MA, USA, July 2006.
    19. 19)
      • 26. Hurley, N., Cheng, Z., Zhang, M.: ‘Statistical attack detection’. Proc. Int. Conf. Recommender Systems (RecSys'09), New York, USA, October 2009, pp. 149156.
    20. 20)
      • 11. Mehta, B., Nejdl, W.: ‘Unsupervised strategies for shilling detection and robust collaborative filtering’, User Model. User-Adapt. Interact., 2009, 19, (1-2), pp. 6597.
    21. 21)
      • 4. Lam, S.K., Riedl, J.: ‘Shilling recommender systems for fun and profit’. Proc. Int. Conf. World Wide Web (WWW'04), New York, USA, May 2004, pp. 393402.
    22. 22)
      • 21. Chen, G., Wang, F., Zhang, C.: ‘Collaborative filtering using orthogonal nonnegative matrix tri-factorization’, Inf. Process. Manag., 2009, 45, (3), pp. 368379.
    23. 23)
      • 10. Su, X.F., Zeng, H.J., Chen, Z.: ‘Finding group shilling in recommendation system’. Proc. Int. Conf. World Wide Web, Chiba, Japan, May 2005, pp. 960961.
    24. 24)
      • 24. Jester’, http://eigentaste.berkeley.edu/dataset/, accessed 23 July 2016.
    25. 25)
      • 8. Chirita, P., Nejdl, W., Zamfir, C.: ‘Preventing shilling attacks in online recommender systems’. Proc. Int. Conf. 7th Annual ACM Int. Workshop on Web Information and Data Management, Washington, DC, USA, November 2005, pp. 6774.
    26. 26)
      • 5. Mehta, B., Hofmann, T., Fankhauser, P.: ‘Lies and propaganda: detecting spam users in collaborative filtering’. Proc. Int. Conf. Intelligent User Interfaces, Honolulu, HI, USA, January 2007, pp. 1421.
    27. 27)
      • 27. O'Mahony, M., Hurley, N., Kushmerick, N., et al: ‘Collaborative recommendation: a robustness analysis’, ACM Trans. Internet Technol., 2004, 4, (4), pp. 344377.
    28. 28)
      • 12. Wu, Z., Cao, J., Mao, B., et al: ‘Semi-SAD: applying semi-supervised learning to shilling attack detection’. Proc. Int. Conf. Recommender Systems (RecSys2011), Chicago, IL, USA, October 2011, pp. 289292.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0345
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading