http://iet.metastore.ingenta.com
1887

Computational SS and conversion protocols in both active and passive settings

Computational SS and conversion protocols in both active and passive settings

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Secret sharing (SS) has been extensively studied as both a means of secure data storage and a fundamental building block for multiparty computation (MPC). For these purposes, code-efficiency and MPC-suitability are required for SS but they are incomparable. Recently, a computational SS and a conversion protocol were proposed. The computational SS is code-efficient and the conversion protocol converts shares of the computational (code-efficient) SS into those of an MPC-suitable SS, and it can be applied to reduce the amount of data storage while maintaining extendibility to MPC. However, this protocol is one-way: one cannot convert the share of MPC output value. In addition, it is only passively secure. The authors propose three protocols and a new computational SS. The first protocol is the inverse of the existing protocol, that is, it converts an MPC-suitable SS to the existing SS. The other two protocols are actively secure conversion protocols that convert shares between the new SS and an MPC-suitable SS. The new computational SS is code-efficient when the number of parties is small, so these two protocols are for converting between the code-efficient SS and an MPC-suitable SS. These two conversion protocols are actively secure in the honest majority.

References

    1. 1)
      • G.R. Blakley .
        1. Blakley, G.R.: ‘Safeguarding cryptographic keys’. Proc. of the National Computer Conf., 1979, vol. 48, pp. 313317.
        . Proc. of the National Computer Conf. , 313 - 317
    2. 2)
      • A. Shamir .
        2. Shamir, A.: ‘How to share a secret’, Commun. ACM, 1979, 22, (11), pp. 612613.
        . Commun. ACM , 11 , 612 - 613
    3. 3)
      • M. Burkhart , M. Strasser , D. Many .
        3. Burkhart, M., Strasser, M., Many, D., et al: ‘SEPIA: privacy-preserving aggregation of multi-domain network events and statistics’. USENIX Security Symp. USENIX Association, 2010, pp. 223240.
        . USENIX Security Symp. USENIX Association , 223 - 240
    4. 4)
      • D. Bogdanov , S. Laur , J.W. Sharemind .
        4. Bogdanov, D., Laur, S., Sharemind, J.W.: A framework for fast privacy-preserving computations’, in Jajodia, S., López, J. (Eds.): ‘ESORICS’ (Springer, Heidelberg Germany, 2008) (LNCS, 5283), pp. 192206.
        .
    5. 5)
      • H. Yamamoto .
        5. Yamamoto, H.: ‘Secret sharing system using (k,l,n) threshold scheme’, IECE Trans., 1985, J68, A(9), pp. 945952 (in Japanese). English translation: Electronics and Communications in Japan, Part I, vol. 69, no. 9, pp. 46–54, Scripta Technica, Inc., Heidelberg Germany, 1986.
        . IECE Trans. , 945 - 952
    6. 6)
      • G.R. Blakley , C. Meadows .
        6. Blakley, G.R., Meadows, C.: ‘Security of ramp schemes’, in Blakley, G.R., Chaum, D. (EDs.): ‘CRYPTO’ (Springer, 1984) (LNCS, Heidelberg Germany, 196), pp. 242268.
        .
    7. 7)
      • H. Krawczyk .
        7. Krawczyk, H.: ‘Secret sharing made short’, in Stinson, D.R. (ED.): ‘CRYPTO’ (Springer, Heidelberg Germany1993) (LNCS, 773), pp. 136146.
        .
    8. 8)
      • R. Cramer , I. Damgård , Y. Ishai .
        8. Cramer, R., Damgård, I., Ishai, Y.: ‘Share conversion, pseudorandom secret-sharing and applications to secure computation’, in Kilian, J. (Ed.): ‘TCC’ (Springer, Heidelberg Germany2005) (LNCS, 3378), pp. 342362.
        .
    9. 9)
      • M. Ito , A. Saito , T. Nishizeki .
        9. Ito, M., Saito, A., Nishizeki, T.: ‘Secret sharing scheme realizing general access structure’, IEICE Trans.., 1989, 72, pp. 5664.
        . IEICE Trans.. , 56 - 64
    10. 10)
      • R. Kikuchi , K. Chida , D. Ikarashi .
        10. Kikuchi, R., Chida, K., Ikarashi, D., et al: ‘Secret sharing schemes with conversion protocol to achieve short share-size and extendibility to multiparty computation’, in Boyd, C., Simpson, L. (EDs.): ‘ACISP’ (Springer, Heidelberg Germany, 2013) (LNCS, 7959), pp. 419434.
        .
    11. 11)
      • R. Kikuchi , K. Chida , D. Ikarashi .
        11. Kikuchi, R., Chida, K., Ikarashi, D., et al: ‘Secret sharing with share-conversion: achieving small share-size and extendibility to multiparty computation’, IEICE Trans.., 2015, 98, A(1), pp. 213222.
        . IEICE Trans.. , 1 , 213 - 222
    12. 12)
      • E. Ben-Sasson , S. Fehr , R. Ostrovsky .
        12. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: ‘Near-linear unconditionally-secure multiparty computation with a dishonest minority’. Advances in Cryptology– CRYPTO 2012–32nd Annual Cryptology Conf., Proc., Santa Barbara, CA, USA, 19–23 August 2012 (LNCS, 7417), pp. 663680.
        . Advances in Cryptology– CRYPTO 2012–32nd Annual Cryptology Conf., Proc. , 663 - 680
    13. 13)
      • I. Damgård , J. Kölker , T. Toft .
        13. Damgård, I., Kölker, J., Toft, T.: ‘Secure computation, I/O-efficient algorithms and distributed signatures’, in Dunkelman, O. (ED.): ‘CT-RSA 2012’ (Springer, Heidelberg Germany, 2012) (LNCS, 7178), pp. 278295.
        .
    14. 14)
      • M.K. Franklin , M. Yung . (1992)
        14. Franklin, M.K., Yung, M.: ‘Communication complexity of secure computation (extended abstract)’, in Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (EDs.): ‘STOC’ (ACM, 1992), pp. 699710.
        .
    15. 15)
      • M.O. Rabin .
        15. Rabin, M.O.: ‘Efficient dispersal of information for security, load balancing, and fault tolerance’, J. ACM, 1989, 36, (2), pp. 335348.
        . J. ACM , 2 , 335 - 348
    16. 16)
      • A. Beimel .
        16. Beimel, A.: ‘Secure schemes for secret sharing and key distribution’. PhD thesis, Israel Institute of Technology, 1996.
        .
    17. 17)
      • O. Goldreich . (2001)
        17. Goldreich, O.: ‘The foundations of cryptography– volume 1, basic techniques’ (Cambridge University Press, Cambridge, UK, 2001).
        .
    18. 18)
      • S. Goldwasser , Y. Lindell .
        18. Goldwasser, S., Lindell, Y.: ‘Secure multi-party computation without agreement’, J. Cryptology, 2005, 18, (3), pp. 247287.
        . J. Cryptology , 3 , 247 - 287
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0276
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address