http://iet.metastore.ingenta.com
1887

Efficient approximate message authentication scheme

Efficient approximate message authentication scheme

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An approximate message authentication scheme is a primitive that allows a sender Alice to send a source state to a receiver Bob such that the latter is assured of its authenticity, where the source state is considered as authentic if it only undergoes a minor change. Here, the authors propose an efficient scheme for this problem and prove its security under a rigorous model. Our scheme only needs a lightweight computation cost and hence is very efficient. As the authentication message is transmitted over a noisy channel, we also value the channel efficiency (i.e. the coding rate). For a fixed coding method, this is determined by the admissible decoding bit error probability . A larger admits a shorter codeword length and hence a larger coding rate. It turns out that the can be set to be a significantly large constant (determined by the legal distortion level for the source state). Compared with existing schemes, the advantage in is evident.

References

    1. 1)
      • 1. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: ‘Codes which detect deception’, Bell Syst. Tech. J., 1974, 53, (3), pp. 405424.
    2. 2)
      • 2. Živić, N.: ‘Robust image authentication in the presence of noise’ (Springer International Publishing, Switzerland, 2015).
    3. 3)
      • 3. Swaminathan, A., Mao, Y., Wu, M.: ‘Robust and secure image hashing’, IEEE Trans. Inf. Forensics Security, 2006, 1, (2), pp. 215230.
    4. 4)
      • 4. Venkatesan, R., Koon, S.M., Jakubowski, M.H., et al: ‘Robust image hashing’. Proc. IEEE Int. Conf. Image Processing (ICIP), vol. 3, September 2000, pp. 664666.
    5. 5)
      • 5. Wu, C.W.: ‘On the design of content-based multimedia authentication systems’, IEEE Trans. Multimed., 2002, 4, (3), pp. 385393.
    6. 6)
      • 6. Xie, L., Arce, G.R., Graveman, R.F.: ‘Approximate image message authentication codes’, IEEE Trans. Multimed., 2001, 3, (2), pp. 242252.
    7. 7)
      • 7. Vadlamudi, L.N., Vaddella, R.P.V., Devara, V.: ‘Robust hash generation technique for content-based image authentication using histogram’, Multimed. Tools Appl., 2016, 75, pp. 65856604.
    8. 8)
      • 8. Ouyang, J., Coatrieux, G., Shu, H.: ‘Robust hashing for image authentication using quaternion discrete Fourier transform and log-polar transform’, Digit. Signal Process., 2015, 41, pp. 98109.
    9. 9)
      • 9. Xie, L., Arce, G.R.: ‘A class of authentication digital watermarks for secure multimedia communication’, IEEE Trans. Image Process., 2001, 10, (11), pp. 17541764.
    10. 10)
      • 10. Singh, D., Singh, S.K.: ‘DCT based efficient fragile watermarking scheme for image authentication and restoration’, Multimed. Tools Appl., 2017, 76, pp. 953977.
    11. 11)
      • 11. Yu, M., Wang, J., Jiang, G., et al: ‘New fragile watermarking method for stereo image authentication with localization and recovery’, Int. J. Electron. Commun. (AEÜ), 2015, 69, pp. 361370.
    12. 12)
      • 12. Wu, W.C.: ‘Quantization-based image authentication scheme using QR error correction’, EURASIP J. Image Video Process., 2017, 2017, p. 13.
    13. 13)
      • 13. Martinian, E., Wornell, G.W., Chen, B.: ‘On authentication with distortion constraints’. Proc. IEEE Symp. Information Theory, Washington, DC, June 2001, p. 6.
    14. 14)
      • 14. Martinian, E., Wornell, G.W., Chen, B.: ‘Authentication with distortion criteria’, IEEE Trans. Inf. Theory, 2005, 51, (7), pp. 25232542.
    15. 15)
      • 15. Tabatabaei, S.A.E., Ur-Rehman, O., Živič, N.: ‘AACI: a mechanism for approximate authentication and correction of images’. Proc. Int. Conf. Communication (ICC'13), Budapest, Hungary, 2013, pp. 727732.
    16. 16)
      • 16. Di Crescenzo, G., Graveman, R.F., Ge, R.: ‘Approximate message authentication and biometric entity authentication’. Proc. Int. Conf. Financial Cryptography (FC'05), 2005, (LNCS, 3570), pp. 240254.
    17. 17)
      • 17. Ge, R., Arce, G.R., Di Crescenzo, G.: ‘Approximate message authentication codes for N-ary alphabets’, IEEE Trans. Inf. Forensics Sec., 2006, 1, (1), pp. 5667.
    18. 18)
      • 18. Graveman, R.F., Fu, K.: ‘Approximate message authentication codes’. Proc. 3rd Annual Fedlab Symp. Advanced Telecommunications/Information Distribution Research Program (ATIRP), vol. 1, College Park, MD, February 1999.
    19. 19)
      • 19. Tonien, D., Safavi-Naini, R., Nickolas, P., et al: ‘Unconditionally secure approximate message authentication’. Proc. 2rd Int. Workshop on Coding and Cryptology (IWCC 2009), 2009, (LNCS, 5557), pp. 233247.
    20. 20)
      • 20. Tonien, D., Safavi-Naini, R., Nickolas, P.: ‘Breaking and repairing an approximate message authentication scheme’, Discrete Math. Algorithms Appl., 2011, 3, (3), pp. 393412.
    21. 21)
      • 21. Safavi-Naini, R., Tonien, D.: ‘Fuzzy universal hashing and approximate authentication’, Discrete Math. Algorithms Appl., 2011, 3, (4), pp. 587607.
    22. 22)
      • 22. Boncelet, C.G.Jr.: ‘The NTMAC for authentication of noisy messages’, IEEE Trans. Inf. Forensics Security, 2006, 1, (1), pp. 3542.
    23. 23)
      • 23. Tabatabaei, S.A.H., Ur-Rehman, O., Živič, N., et al: ‘Secure and robust two-phase image authentication’, IEEE Trans. Multimed., 2015, 17, (7), pp. 945956.
    24. 24)
      • 24. Tabatabaei, S.A.H., Živić, N.: ‘A review of approximate message authentication codes’, in Živić, N. (Ed.): ‘Robust image authentication in the presence of noise’ (Springer International Publishing, Switzerland, 2015), pp. 105127.
    25. 25)
      • 25. Liu, Y., Boncelet, C.G.Jr.: ‘The CRC-NTMAC for noisy message authentication’, IEEE Trans. Inf. Forensics Security, 2006, 1, (4), pp. 517523.
    26. 26)
      • 26. Hoeffding, W.: ‘Probability inequalities for sums of bounded random variables’, J. Am. Stat. Assoc., 1963, 58, (301), pp. 1330.
    27. 27)
      • 27. Goldreich, O., Goldwasser, S., Micali, S.: ‘How to construct random functions’, J. ACM, 1986, 33, (4), pp. 792807.
    28. 28)
      • 28. Stinson, D.R.: ‘Cryptography: theory and practice’ (Chapman & Hall/CRC, 2006, 3rd edn.).
    29. 29)
      • 29. Williams, N.: ‘A pseudo-random function (PRF) API extension for the generic security service application program interface (GSS-API)’, Request for Comments 4401, 2006. Available at https://tools.ietf.org/html/rfc4401.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2016.0256
Loading

Related content

content/journals/10.1049/iet-ifs.2016.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address