Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Searching all truncated impossible differentials in SPN

This study concentrates on finding all truncated impossible differentials in substitution–permutation networks (SPNs) ciphers. Instead of using the miss-in-the-middle approach, the authors propose a mathematical description of the truncated impossible differentials. First, they prove that all truncated impossible differentials in an r + 1 rounds SPN cipher could be obtained by searching entry ‘0’ in D ( P ) r , where D ( P ) denotes the differential pattern matrix (DPM) of P-layer, thus the length of impossible differentials of an SPN cipher is upper bounded by the minimum integer r such that there is no entry ‘0’ in D ( P ) r . Second, they provide two efficient algorithms to compute the DPMs for both bit-shuffles and matrices over GF(2 n ). Using these tools they prove that the longest truncated impossible differentials in SPN structure is 2-round, if the P-layer is designed as an maximum distance separable (MDS) matrix. Finally, all truncated impossible differentials of advanced encryption standard (AES), ARIA, AES-MDS, PRESENT, MAYA and Puffin are obtained.

References

    1. 1)
      • 11. Wei, Y., Li, P., Sun, B., et al: ‘Impossible differential cryptanalysis on Feistel ciphers with SP and SPS round functions’. ACNS 2010, Beijing, China, June 2010, pp. 105122.
    2. 2)
      • 20. Nakahara, J.Jr., Abrahao, É.: ‘A new involutory MDS matrix for the AES’, Int. J. Netw. Sec., 2009, 9, pp. 109116.
    3. 3)
      • 7. Mala, H., Dakhilalian, M., Rijmen, V., et al: ‘Improved impossible differential cryptanalysis of 7-round AES-128’. INDOCRYPT 2010, Hyderabad, India, December 2010, pp. 282291.
    4. 4)
      • 19. MacWilliams, F.J., Sloane, N.J.A.: ‘The theory of error correcting codes’ (Elsevier, North Holland, 1986).
    5. 5)
      • 21. Biham, E., Keller, N.: ‘Cryptanalysis of reduced variants of Rijndael’. Third AES Conf., 2000. Available at http://www.madchat.fr/crypto/codebreakers/35-ebiham.pdf, accessed December 2013.
    6. 6)
      • 8. Li, R., Sun, B., Zhang, P., et al: ‘New impossible differential cryptanalysis of ARIA’. Cryptology ePrint Archive, Report 2008/227. Available at http://www.eprint.iacr.org/2008/227.
    7. 7)
      • 13. Biham, E., Shamir, A.: ‘Differential cryptanalysis of DES-like cryptosystem (extended abstract)’. CRYPTO, 1990, pp. 221.
    8. 8)
      • 15. Cheng, H., Heys, H.M., Wang, C.: ‘Puffin: a novel compact block cipher targeted to embedded digital systems’. Proc. of Digital System Design Architectures, Methods and Tools (DSD) 2008, Lubeck, Germany, August 2007, pp. 383390.
    9. 9)
      • 4. Knudsen, L.: ‘DEAL-A 128 bit block cipher’. Technical Report, 151, Department of Informatics, University of Bergen, Bergen, Norway, February 1998.
    10. 10)
      • 3. Bogdanov, A., Knudsen, L.R., Leander, G., et al: ‘PRESENT: an ultra-lightweight block cipher’. Proc. of Cryptographic Hardware and Embedded Systems – CHES 2007, Vienna, Austria, September 2007, pp. 450466.
    11. 11)
      • 18. Sugita, M., Kobara, K., Uehara, K., et al: ‘Relationships among differential, truncated differential, impossible differential cryptanalyses against block-oriented block ciphers like Rijndael, E2’. Third AES Workshop, 2000. Available at http://www.csrc.nist.gov/archive/aes/round2/conf3/papers/AES3papers-5.zip, accessed October 2014.
    12. 12)
      • 9. Kim, J., Hong, S., Sung, J., et al: ‘Impossible differential cryptanalysis for block cipher structures’. Indocrypt 2003, New Delhi, India, December 2003, pp. 8296.
    13. 13)
      • 6. Zhang, W., Wu, W., Feng, D.: ‘New results on impossible differential cryptanalysis of reduced AES’. ICISC07, Seoul, Korea, November 2007, pp. 239250.
    14. 14)
      • 1. Daemen, J., Rijmen, V.: ‘The design of Rijndael – AES – the advanced encryption standard’ (Springer, Heidelberg, 2002).
    15. 15)
      • 14. Kanda, M., Matsumoto, T.: ‘Security of camellia against truncated differential cryptanalysis’. FSE 2001, Yokohama, Japan, April 2001, pp. 286299.
    16. 16)
      • 12. Wu, S., Wang, M.: ‘Automatic search of truncated impossible differentials for word-oriented block ciphers’. INDOCRYPT 2012, Kolkata, India, December 2012, pp. 283302.
    17. 17)
      • 5. Biham, E., Biryukov, A., Shamir, A.: ‘Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials’. EUROCRYPT99, Prague, Czech Republic, May 1999, pp. 1223.
    18. 18)
      • 2. Kwon, D., Kim, J., Park, S., et al: ‘New block cipher: ARIA’. ICISC 2003, Seoul, Korea, November 2003, pp. 432445.
    19. 19)
      • 16. Gomathisankaran, M., Lee, R.B.L.: ‘MAYA: a novel block encryption function’. Int. Workshop on Coding and Cryptography 2009, Proc., 2009. Available at http://www.palms.princeton.edu/system/files/maya.pdf, accessed 14 February 2010.
    20. 20)
      • 10. Luo, Y., Wu, Z., Lai, X.: ‘A unified method for finding impossible differentials of block cipher structures’. Cryptology ePrint Archive, Report 2009/627. Available at http://www.eprint.iacr.org/2009/627.
    21. 21)
      • 17. Liu, B., Lai, H. J.: ‘Matrices in combinatorics and graph theory’ (Springer, 2000).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2015.0052
Loading

Related content

content/journals/10.1049/iet-ifs.2015.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address