http://iet.metastore.ingenta.com
1887

Logarithmic size ring signatures without random oracles

Logarithmic size ring signatures without random oracles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Ring signatures enable a user to anonymously sign a message on behalf of group of users. In this study, the authors propose the first ring signature scheme whose size is O(log2 N), where N is the number of users in the ring. They achieve this result by improving Chandran et al.’s ring signature scheme presented at the International Colloquium on Automata, Languages and Programming 2007. Their scheme uses a common reference string and non-interactive zero-knowledge proofs. The security of their scheme is proven without requiring random oracles.

References

    1. 1)
      • 1. Rivest, R., Shamir, A., Tauman, Y.: ‘How to leak a secret: theory and applications of ring signatures’. In Essays in Memory of Shimon Even, 2006(LNCS, 3895), pp. 164186.
    2. 2)
      • 2. Chandran, N., Groth, J., Sahai, A.: ‘Ring signatures of sub-linear size without random oracles’. Proc. of ICALP'07, Wrocław, Poland, 2007(LNCS, 4596), pp. 423434.
    3. 3)
      • 3. Naor, M.: ‘Deniable ring authentication’. Proc. of CRYPTO'02, 2002(LNCS, 2442), pp. 481498.
    4. 4)
      • 4. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: ‘Anonymous identification in ad hoc groups’. Proc. of EUROCRYPT'04, Interlaken, Switzerland, 2004(LNCS, 3027), pp. 609626.
    5. 5)
      • 5. Zhang, F., Kim, K.: ‘ID-based blind signature and ring signature from pairings’. Proc. of ASIACRYPT'02, Queenstown, New Zealand, 2002(LNCS, 2501), pp. 533547.
    6. 6)
      • 6. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: ‘Certificate based (linkable) ring signature’. Proc. of ISPEC'07, Hong Kong, China, 2007(LNCS, 4464), pp. 7992.
    7. 7)
      • 7. Fujisaki, E., Suzuki, K.: ‘Traceable ring signature’. Proc. of PKC'07, Beijing, China, 2007(LNCS, 4450), pp. 181200.
    8. 8)
      • 8. Liu, J.K., Wei, V.K., Wong, D.S.: ‘Linkable and anonymous signature for ad hoc groups’.  ACISP'04, 2004(LNCS, 3108), pp. 325335.
    9. 9)
    10. 10)
      • 10. Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: ‘Ring signatures without random oracles’. Proc. of ASIACCS'06, Taipei, Taiwan, 2006(CCS), pp. 297302.
    11. 11)
    12. 12)
      • 12. Shacham, H., Waters, B.: ‘Efficient ring signatures without random oracles’. Proc. PKC'07, Beijing, China, 2007(LNCS, 4450), pp. 166180.
    13. 13)
      • 13. Boyen, X.: ‘Mesh signatures’. Proc. of EUROCRYPT'07, Barcelona, Spain, 2007(LNCS, 4515), pp. 210227.
    14. 14)
      • 14. Schäge, S., Schwenk, J.: ‘A CDH-based ring signature scheme with short signatures and public keys’. Proc. of FC'10, Tenerife, Spain, 2010(LNCS, 6052), pp. 129142.
    15. 15)
      • 15. Boneh, D., Boyen, X.: ‘Short signatures without random oracles’. Proc. of EUROCRYPT'04, Interlaken, Switzerland, 2004(LNCS, 3027), pp. 5673.
    16. 16)
      • 16. Boneh, D., Goh, E.-J., Nissim, K.: ‘Evaluating 2-DNF formulas on ciphertexts’. Proc. of TCC'05, Cambridge, MA, 2005(LNCS, 3378), pp. 325341.
    17. 17)
      • 17. Groth, J., Ostrovsky, R., Sahai, A.: ‘Perfect non-interactive zero-knowledge for NP’. Proc. of EUROCRYPT'06, St. Petersburg, Russia, 2006(LNCS, 4004), pp. 339358.
    18. 18)
      • 18. Boyen, X., Waters, B.: ‘Compact group signatures without random oracles’. Proc. of EUROCRYPT'06, St. Petersburg, Russia, 2006(LNCS, 4004), pp. 427444.
    19. 19)
      • 19. Groth, J., Sahai, A.: ‘Efficient non-interactive proof systems for bilinear groups’. Proc. of EUROCRYPT'08, Istanbul, Turkey, 2008(LNCS, 4965), pp. 415432.
    20. 20)
      • 20. Guillevic, A.: ‘Comparing the pairing efficiency over composite-order and prime-order elliptic curves’. Cryptology ePrint Archive, Report 2013/218 (2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ifs.2014.0428
Loading

Related content

content/journals/10.1049/iet-ifs.2014.0428
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address