Identity-based remote data possession checking in public clouds

Identity-based remote data possession checking in public clouds

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Information Security — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Checking remote data possession is of crucial importance in public cloud storage. It enables the users to check whether their outsourced data have been kept intact without downloading the original data. The existing remote data possession checking (RDPC) protocols have been designed in the PKI (public key infrastructure) setting. The cloud server has to validate the users’ certificates before storing the data uploaded by the users in order to prevent spam. This incurs considerable costs since numerous users may frequently upload data to the cloud server. This study addresses this problem with a new model of identity-based RDPC (ID-RDPC) protocols. The authors present the first ID-RDPC protocol proven to be secure assuming the hardness of the standard computational Diffie-Hellman problem. In addition to the structural advantage of elimination of certificate management and verification, the authors ID-RDPC protocol also outperforms the existing RDPC protocols in the PKI setting in terms of computation and communication.


    1. 1)
      • 1. Ateniese, G., Burns, R., Curtmola, R., et al: ‘Provable data possession at untrusted stores’. CCS'07, 2007, pp. 598609.
    2. 2)
      • 2. Ateniese, G., DiPietro, R., Mancini, L.V., Tsudik, G.: ‘Scalable and efficient provable data possession’. SecureComm 2008, article 9, 2008.
    3. 3)
      • 3. Erway, C.C., Kupcu, A., Papamanthou, C., Tamassia, R.: ‘Dynamic provable data possession’. CCS'09, 2009, pp. 213222.
    4. 4)
      • 4. Sebé, F., Domingo-Ferrer, J., Martnez-Ballesté, A., Deswarte, Y., Quisquater, J.: ‘Efficient remote data integrity checking in critical information infrastructures’, IEEE Trans. Knowl. Data Eng., 2008, 20, (8), pp. 10341038 (doi: 10.1109/TKDE.2007.190647).
    5. 5)
      • 5. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H., Yau, S.S.: ‘Efficient provable data possession for hybrid clouds’. CCS'10, 2010, pp. 756758.
    6. 6)
      • 6. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: ‘Cooperative provable data possession for integrity verification in multi-cloud storage’, IEEE Trans. Parallel Distrib. Syst., 2012, 23, (12), pp. 2231224 (doi: 10.1109/TPDS.2012.66).
    7. 7)
      • 7. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: ‘MR-PDP: multiple-replica provable data possession’. ICDCS'08, 2008, pp. 411420.
    8. 8)
      • 8. Barsoum, A.F., Hasan, M.A.: ‘Provable possession and replication of data over cloud servers’. CACR, University of Waterloo, Report2010/32,2010. Available at
    9. 9)
      • 9. Wang, H.: ‘Proxy provable data possession in public clouds’. IEEE Transactions on Services Computing. To appear, available on-line at
    10. 10)
      • 10. Hao, Z., Yu, N.: ‘A multiple-replica remote data possession checking protocol with public verifiability’. Proc. 2010 Second Int. Symp. on Data, Privacy, and E-Commerce, 2010, pp. 8489.
    11. 11)
      • 11. Barsoum, A.F., Hasan, M.A.: ‘On verifying dynamic multiple data copies over cloud servers’. IACR eprint report 447, 2011. Available at
    12. 12)
      • 12. Wang, H., Zhang, Y.: ‘On the knowledge soundness of a cooperative provable data possession scheme in multicloud storage’. IEEE Transactions on Parallel and Distributed Systems. To appear, available at
    13. 13)
      • 13. Shacham, H., Waters, B.: ‘Compact proofs of retrievability’. ASIACRYPT 2008, 2008, (LNCS, 5350), pp. 90107.
    14. 14)
      • 14. Bowers, K.D., Juels, A., Oprea, A.: ‘Proofs of retrievability: theory and implementation’. CCSW'09, 2009, pp. 4354.
    15. 15)
      • 15. Zheng, Q., Xu, S.: ‘Fair and dynamic proofs of retrievability’. CODASPY'11, 2011, pp. 237248.
    16. 16)
      • 16. Dodis, Y., Vadhan, S., Wichs1, D.: ‘Proofs of retrievability via hardness amplification’. TCC 2009, 2009, (LNCS, 5444), pp. 109127.
    17. 17)
      • 17. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H.: ‘Zero-knowledge proofs of retrievability’, Sci. Chin. Inf. Sci., 2011, 54, (8), pp. 16081617 (doi: 10.1007/s11432-011-4293-9).
    18. 18)
      • 18. Juels, A., Kaliski, B.S.Jr.: ‘PORs: proofs of retrievability for large files’. CCS'07, 2007, pp. 584597.
    19. 19)
      • 19. Boneh, D., Lynn, B., Shacham, H.: ‘Short signatures from the Weil pairing’. ASIACRYPT 2001, 2001, (LNCS, 2248), pp. 514532.
    20. 20)
      • 20. Boneh, D., Franklin, M.: ‘Identity-based encryption from the Weil piring’. CRYPTO 2001, 2001, (LNCS, 2139), pp. 213229.
    21. 21)
      • 21. Miyaji, A., Nakabayashi, M., Takano, S.: ‘New explicit conditions of elliptic curve traces for FR-reduction’, IEICE Trans. Fundam., 2001, 5, pp. 12341243.
    22. 22)
      • 22. Lim, H.W.: ‘On the application of identity-based cryptography in grid security’. PhD dissertation, University of London, London, UK, 2006.
    23. 23)
      • 23. Yu, S., Ren, K., Lou, W.: ‘FDAC: toward fine-grained distributed data access control in wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (4), pp. 673686 (doi: 10.1109/TPDS.2010.130).
    24. 24)
      • 24. Yu, S., Ren, K., Lou, W.: ‘Attribute-based on-demand multicast group setup with membership anonymity’, Comput. Netw., 2010, 54, (3), pp. 377386 (doi: 10.1016/j.comnet.2009.09.009).
    25. 25)
      • 25. Barreto, P.S.L.M., Lynn, B., Scott, M.: ‘Efficient implementation of pairing-based cryptosystems’, J. Cryptol., 2004, 17, (4), pp. 321334 (doi: 10.1007/s00145-004-0311-z).
    26. 26)
      • 26. Research C.: SEC 2: Recommended Elliptic Curve Domain Parameters, available at
    27. 27)
      • 27. Pointcheval, D., Stern, J.: ‘Security arguments for digital signatures and blind signatures’, J. Cryptol., 2000, 13, (3), pp. 361396 (doi: 10.1007/s001450010003).

Related content

This is a required field
Please enter a valid email address