Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Radial basis probabilistic neural network for differential protection of power transformer

Radial basis probabilistic neural network for differential protection of power transformer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Protection of medium- and large-power transformers has always remained an area of interest of relaying engineers. Conventionally, the protection is done making use of magnitude of various frequency components in differential current. A novel technique to distinguish between magnetising inrush and internal fault condition of a power transformer based on the difference in the current wave shape is developed. The proposed differential algorithm makes use of radial basis probabilistic neural network (RBPNN) instead of the conventional harmonic restraint-based differential relaying technique. A comparison of performance between RBPNN and heteroscedastic-type probabilistic neural network (PNN) is made. The optimal smoothing factor of heteroscedastic-type PNN is obtained by particle swarm optimisation technique. The results demonstrate the capability of RBPNN in terms of accuracy with respect to classification of differential current of the power transformer. For the verification of the developed algorithm, relaying signals for various operating conditions of the transformer, including internal faults and external faults, were obtained through PSCAD/EMTDC. The proposed algorithm has been implemented in MATLAB.

References

    1. 1)
    2. 2)
    3. 3)
      • Z. Moravej , D.N. Vishwakarma . ANN-based harmonic restraint differential protection of power transformer. IE (I) J. EL , 1 , 1 - 6
    4. 4)
      • A.G. Phadke , J.S. Thorp . A new computer-based flux-restrained current differential relay for power transformer protection. IEEE Trans. Power Apparat. Syst. , 11 , 3624 - 3629
    5. 5)
    6. 6)
      • Aibe, N., Yasunaga, M., Yoshihara, I., Kim, J.H.: `A probabilistic neural network hardware system using a learning parameter parallel architecture', Proc. IEEE Int. Conf. Neural Networks, 12–17 May 2002, 3, p. 2270–2275.
    7. 7)
      • N.K. Bose , P. Liang . (1996) Neural network fundamentals with graphs, algorithms, andapplications.
    8. 8)
      • D.F. Specht . Probabilistic neural network. Neural Networks , 1 , 190 - 118
    9. 9)
      • M.T. Musavi , K. Kalantri , W. Ahmed . Improving the performance of probabilistic neural networks. IEEE Int. Conf. Neural Networks , 595 - 600
    10. 10)
      • Z. Moravej , D.N. Vishwakarma , S.P. Singh . Application of radial basis function neural network for differential relaying of a power transformer. Comput. Elec. Eng., 2003 , 3 , 421 - 434
    11. 11)
    12. 12)
    13. 13)
      • Kennedy, J., Eberhart, R.: `Particle swarm optimization', Proc. IEEE Int. Conf. Neural Networks Perth, IEEE Service Center, Australia, November 2005, Piscataway, NJ, IV, p. 1–61942–1948, .
    14. 14)
    15. 15)
    16. 16)
      • K.E. Parsopoulos , M.N. Vrahatis . Recent approaches to global optimization problems through particle swarm optimization. Natural Comput. , 235 - 306
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • E. Parzen . On the estimation of a probability density function and mode. Ann. Math. Statist. , 1065 - 1076
    21. 21)
      • J.P. Sa , M. De . (2001) Pattern recognition, concepts, methods and applications.
    22. 22)
    23. 23)
      • Bertrand, P., Martin, E., Guillot, M.: `Neural networks: a mature technique for protection relays', IEE, CIRED 97'Conf. Publication No. 438, 2–5 June 1997, p. 1.22.1–1.22.5.
    24. 24)
      • Minchin, G., Zaknich, A.: `A design for FPGA implementation of the probabilistic neural network', Proc. IEEE TCONI'99, 1999, p. 556–559.
    25. 25)
      • D. Woodford . (2001) Introduction to PSCAD V3.
    26. 26)
    27. 27)
      • A.L.O. Fernandez , N.K.I. Ghonaim , J.A. Valencia . A FIRANN as a differential relay for three-phase power transformer protection. IEEE Trans. Power Deliv. , 2 , 215 - 218
    28. 28)
      • Bu, N., Hamamoto, T., Tsuji, T., Fukuda, O.: `FPGA implementation of a probabilistic neural network for a bioelectric human interface', Proc. IEEE Int. Midwest Symp. Circuits and Systems, July 2004, 3, p. 25–28.
    29. 29)
    30. 30)
      • M.J. Heathcote . (2007) The J&P transformer book.
    31. 31)
    32. 32)
      • Sachdev, M.S.: `Microprocessor relays and protection systems', Publication No. 88EH0269-1-PWR, 1988, IEEE Tutorial Course Text.
    33. 33)
      • D.S. Huang , W.B. Zhao . Determining the centers of radial basis probabilities neural networks by recursive orthogonal least-square algorithms. Appl. Math. Comput. , 1 , 461 - 473
    34. 34)
    35. 35)
    36. 36)
      • A.R. Cockshott , B.E. Hartman . Improving the fermentation medium for Echinocandin B production. Part II. Particle swarm optimization. Process Biochem. , 661 - 669
    37. 37)
      • M. Tripathy , R.P. Maheshwari , H.K. Verma . Advances in transform protection: a review. Electr. Power Compon. Syst. , 11 , 1203 - 1209
    38. 38)
      • Specht, D.F.: `Probabilistic neural networks for classification, mapping, or associative memory', Proc. IEEE Int. Joint Conf. Neural Networks, July 1988, 1, p. 525–532.
    39. 39)
      • P. Arboleya , G. Diaz , J.G. Aleixandre , C.G. Moran . A solution to the dilemma inrush/fault in transformer differential relaying using MRA and wavelets. Electr. Power Syst. Res. , 3 , 285 - 301
    40. 40)
    41. 41)
      • S. Osowski . Neural network for estimation of harmonic components in a power system. IEE Proc., Gener. Transm. Distrib. , 2 , 129 - 135
    42. 42)
      • R.P. Maheshwari , H.K. Verma . Adaptive digital differential relay of parabolic characteristic for transformer protection. Electr. Mach. Power Syst. , 5 , 459 - 473
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd_20070037
Loading

Related content

content/journals/10.1049/iet-gtd_20070037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address