http://iet.metastore.ingenta.com
1887

Implementation of the power transistor-assisted Sen transformer in steady-state load flow analysis

Implementation of the power transistor-assisted Sen transformer in steady-state load flow analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The wide use of power flow controllers (PFCs) in transmission and distribution grids is becoming imperative. Power transistor-assisted Sen transformer (TAST) is a very recently introduced novel PFC that bridges the gap between most versatile flexible AC transmission systems controllers. It proved to possess closely comparable technical characteristics to that of the unified power flow controller (UPFC) at an installation cost that is less than the half. It is thus an attractive substitute of the UPFC for many utility applications. Nonetheless, since the TAST is a newly introduced PFC, it is of great importance to develop its steady-state model for its implementation in modern power systems analysis. The main contribution of this study is presenting two accurate steady-state models of the TAST: a simplified Simulink model (SSM) and a comprehensive Newton–Raphson model (CNRM) for its representation in the load flow analysis. The presented SSM and CNRM of the TAST are novel. A standard five-bus system and a modified IEEE-30 bus power system are used for demonstration of the effectiveness and validation of the SSM and the CNRM. Very closely comparable results are obtained when a TAST or more is used to increase and decrease the power flow in transmission lines.

References

    1. 1)
      • 1. Alizadeh, M.I., Moghaddam, M.P., Amjady, N., et al: ‘Flexibility in future power systems with high renewable penetration: a review’, Renew. Sust. Energy Rev., 2016, 57, pp. 11861193.
    2. 2)
      • 2. Kondziella, H., Bruckner, T.: ‘Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies’, Renew. Sust. Energy Rev., 2016, 53, pp. 1022.
    3. 3)
      • 3. Shahidehpour, M., Alomoush, M.: ‘Restructured electrical power systems: operation: trading, and volatility’ (Marcel Dekker Inc., New York, USA, 2001).
    4. 4)
      • 4. Gyugyi, L., Schauder, C. D., Williams, S. I., et al: ‘The unified power flow controller: a new approach to power transmission control’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 10851097.
    5. 5)
      • 5. Sen, K. K., Sen, M. L.: ‘Versatile power flow transformers for compensating power flow in a transmission line’. US Patent 6,384,581, 2002.
    6. 6)
      • 6. Sen, K. K., Sen, M. L.: ‘Introducing the family of Sen transformers: a set of power flow controlling transformers’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 149157.
    7. 7)
      • 7. Gasim Mohamed, S. E., Jasni, J., Radzi, M. A. M., et al: ‘Power transistor-assisted Sen transformer: a novel approach to power flow control’, Electr. Power Syst. Res., 2016, 133, pp. 228240.
    8. 8)
      • 8. Liu, L., Zhu, P., Kang, Y., et al: ‘Power flow control performance analysis of a unified power flow controller in a novel control scheme’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 16131619.
    9. 9)
      • 9. Li, Q.: ‘Analysis, design, laboratory evaluation of a distributed unified power flow controller concept’. PhD thesis, University of Kentucky, USA, 2006.
    10. 10)
      • 10. Hingorani, N.G., Gyugyi, L.: ‘Understanding FACTS: concepts and technology of flexible AC transmission systems’ (Wiley-IEEE Press, New York, 2000).
    11. 11)
      • 11. Sen, K.K., Sen, M.L.: ‘Introduction to FACTS controllers: theory, modeling, and applications’ (John Wiley & Sons, New Jersey, 2009).
    12. 12)
      • 12. Kumar, A., Kumar, J.: ‘Comparison of UPFC and Sen transformer for ATC enhancement in restructured electricity markets’, Int. J. Electr. Power Energy Syst., 2012, 41, (1), pp. 96104.
    13. 13)
      • 13. Kim, S.Y., Yoon, J.S., Chang, B.H., et al: ‘The operation experience of KEPCO UPFC’. Proc. from 2005: Int. Conf. on Electrical Machines and Systems, Nanjing, China, September 2005, vol. 3, pp. 25022505.
    14. 14)
      • 14. Shperling, B., Sun, J., Bhattacharya, S.: ‘Power flow control on 345 kV lines with the 200 MVA convertible static compensator’. Proc. from 2005: Power Tech, Russia, 2005, pp. 17.
    15. 15)
      • 15. Schauder, C., Stacey, E., Lund, M., et al: ‘AEP UPFC project: installation, commissioning and operation of the ±160 MVA STATCOM (phase I)’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 15301535.
    16. 16)
      • 16. Sen, K. K., Sen, M. L.: ‘Comparison of the ‘Sen’ transformer with the unified power flow controller’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 15231533.
    17. 17)
      • 17. Yuan, J., Liu, L., Fei, W., et al: ‘Hybrid electromagnetic unified power flow controller: a novel flexible and effective approach to control power flow’, IEEE Trans. Power Deliv., 2016. DOI: 10.1109/TPWRD.2016.2616368.
    18. 18)
      • 18. Kumar, A., Gao, W.: ‘Power flow model of ‘Sen’ transformer for loadability enhancement and comparison with unified power-flow controllers in hybrid electricity markets’, Electr. Power Compon. Syst., 2009, 37, (2), pp. 189209.
    19. 19)
      • 19. Cano, J. M., Mojumdar, M. R. R., Norniella, J. G., et al: ‘Phase shifting transformer model for direct approach power flow studies’, Int. J. Electr. Power Energy Syst., 2017, 91, pp. 7179.
    20. 20)
      • 20. Gyugyi, L.: ‘Unified power-flow control concept for flexible AC transmission systems’, IEE Proc. C, Gener., Transm. Distrib., 1992, 139, (4), pp. 323331.
    21. 21)
      • 21. Kamel, S., Jurado, F., Lopes, J. P.: ‘Comparison of various UPFC models for power flow control’, Electr. Power Syst. Res., 2015, 121, pp. 243251.
    22. 22)
      • 22. Kamel, S., Jurado, F.: ‘Power flow analysis with easy modelling of interline power flow controller’, Electr. Power Syst. Res., 2014, 108, pp. 234244.
    23. 23)
      • 23. Bhowmick, S., Das, B., Kumar, N.: ‘An indirect UPFC model to enhance reusability of newton power-flow codes’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 20792088.
    24. 24)
      • 24. Lee, S. H., Chu, C. C., Chang, D. H.: ‘Comprehensive UPFC models for power flow calculations in practical power systems’. Power Engineering Society Summer Meeting, Vancouver, BC, Canada, July 2001, vol. 1, pp. 2732.
    25. 25)
      • 25. Fuerte-Esquivel, C. R., Acha, E., Ambriz-Perez, H.: ‘A thyristor controlled series compensator model for the power flow solution of practical power networks’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 5864.
    26. 26)
      • 26. Fuerte-Esquivel, C. R., Acha, E.: ‘Unified power flow controller: a critical comparison of Newton–Raphson UPFC algorithms in power flow studies’, IEE Proc. Gener., Transm. Distrib., 1997, 144, (5), pp. 437444.
    27. 27)
      • 27. Noroozian, M., Ängquist, L., Ghandhari, M., et al: ‘Use of UPFC for optimal power flow control’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 16291634.
    28. 28)
      • 28. Nabavi-Niaki, A., Iravani, M. R.: ‘Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies’, IEEE Trans. Power Syst., 1996, 11, (4), pp. 19371943.
    29. 29)
      • 29. Kumar, A., Sekhar, C.: ‘Comparison of Sen transformer and UPFC for congestion management in hybrid electricity markets’, Int. J. Electr. Power Energy Syst., 2013, 47, pp. 295304.
    30. 30)
      • 30. https://www.mathworks.com/help/physmod/sps/examples/upfc-detailed-model.html. Retrieved 4 June 2017.
    31. 31)
      • 31. https://www.mathworks.com/help/physmod/sps/examples/upfc-phasor-model.html. Retrieved 4 June 2017.
    32. 32)
      • 32. Faruque, M.O., Dinavahi, V.: ‘A tap-changing algorithm for the implementation of ‘Sen’ transformer’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 17501757.
    33. 33)
      • 33. Mohamed, S.E.G., Jasni, J., Radzi, M.A.M., et al: ‘Optimal allocation of ‘Sen’ transformer for active power loss reduction’. 2014 IEEE Int. Conf. on Power and Energy (PECon), Kuching, Malaysia, December 2014, pp. 5964.
    34. 34)
      • 34. Gasim, M.S.E., Jasni, J., Radzi, M.A.M., et al: ‘Power system security enhancement and loss reduction using the SMART power flow controller’. 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Kuala Lumpur, Malaysia, May 2014, pp. 307311.
    35. 35)
      • 35. Dahat, S.A., Chowdhury, A., Kundu, P., et al: ‘Mitigation of voltage fluctuation in the transmission line by using SEN transformer’. IEEE Int. Conf. on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, July 2016, pp. 16.
    36. 36)
      • 36. Asghari, B., Faruque, M.O., Dinavahi, V.: ‘Detailed real-time transient model of the ‘Sen’ transformer’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 15131521.
    37. 37)
      • 37. Fentie, D., Garcia, J.C., Gokaraju, R., et al: ‘EMT model of the ‘Sen transformer’ for fault analysis studies’. Int. Conf. on Power Systems Transients, Cavtat, Croatia, June 2015.
    38. 38)
      • 38. Liu, J., Dinavahi, V.: ‘Nonlinear magnetic equivalent circuit-based real-time Sen transformer electromagnetic transient model on FPGA for HIL emulation’, IEEE Trans. Power Deliv., 2016, 31, (6), pp. 24832493.
    39. 39)
      • 39. Acha, E., Fuerte-Esquivel, C.R., Ambriz-Pérez, H., et al: ‘FACTS modelling and simulation in power networks’ (John Wiley & Sons, London, 2004).
    40. 40)
      • 40. Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’ (McGraw-Hill, New York, NY, USA, 1968).
    41. 41)
      • 41. Das, D.: ‘Dynamic control of grid power flow using controllable network transformers’. PhD thesis, Georgia Institute of Technology, Georgia, 2012.
    42. 42)
      • 42. Shaarbafi, K.: ‘Transformer modelling guide, AESO Alberta electric system operator’, 2014. Available at: https://www.aeso.ca/assets/linkfiles/4040.002-Rev02-Transformer-Modelling-Guide.pdf, Retrieved 1 January 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6197
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6197
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address