Implementation of the power transistor-assisted Sen transformer in steady-state load flow analysis

Implementation of the power transistor-assisted Sen transformer in steady-state load flow analysis

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The wide use of power flow controllers (PFCs) in transmission and distribution grids is becoming imperative. Power transistor-assisted Sen transformer (TAST) is a very recently introduced novel PFC that bridges the gap between most versatile flexible AC transmission systems controllers. It proved to possess closely comparable technical characteristics to that of the unified power flow controller (UPFC) at an installation cost that is less than the half. It is thus an attractive substitute of the UPFC for many utility applications. Nonetheless, since the TAST is a newly introduced PFC, it is of great importance to develop its steady-state model for its implementation in modern power systems analysis. The main contribution of this study is presenting two accurate steady-state models of the TAST: a simplified Simulink model (SSM) and a comprehensive Newton–Raphson model (CNRM) for its representation in the load flow analysis. The presented SSM and CNRM of the TAST are novel. A standard five-bus system and a modified IEEE-30 bus power system are used for demonstration of the effectiveness and validation of the SSM and the CNRM. Very closely comparable results are obtained when a TAST or more is used to increase and decrease the power flow in transmission lines.

Related content

This is a required field
Please enter a valid email address