http://iet.metastore.ingenta.com
1887

Two-stage stochastic demand response in smart grid considering random appliance usage patterns

Two-stage stochastic demand response in smart grid considering random appliance usage patterns

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

By effectively adjusting the appliance usage patterns of customers, demand response (DR) is expected to bring significant economic and environmental benefits to the future smart grid. Two kinds of appliances should be considered for DR, i.e. shiftable appliances such as dishwashers and laundry machines, and non-shiftable appliances such as lights and stoves. Although the shiftable appliances can be well controlled by energy management systems, the random usage patterns of non-shiftable appliances will result in uncertainties to electrical demands and thus, affect the efficiency and reliability of smart grid operation. A two-stage stochastic programming problem is formulated, for which the distribution system operation cost is minimised in the first stage, by considering various distribution system operation constraints. The scheduling of shiftable appliances is optimised in the second stage, by considering the random usage patterns of non-shiftable appliances. To reduce the computational complexity caused by a large number of home appliances in distribution systems, scenario reduction technique is applied to reduce the number of possible scenarios while still retaining the essential features of the original scenario set. Extensive simulations are performed to evaluate the proposed DR scheme in IEEE 33-bus and 119-bus test distribution systems based on real appliance usage pattern data.

References

    1. 1)
      • 1. Residential energy consumption survey’. Available at: http://www.eia.gov/consumption/residential/index.php.
    2. 2)
      • 2. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7, (3), pp. 381388.
    3. 3)
      • 3. Parvania, M., Fotuhi-Firuzabad, M.: ‘Demand response scheduling by stochastic SCUC’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8998.
    4. 4)
      • 4. Wolak, F.A.: ‘Residential customer response to real-time pricing: the Anaheim critical peak pricing experiment’ (Center for the Study of Energy Markets, Berkeley, CA, USA, 2007).
    5. 5)
      • 5. Samadi, P., Mohsenian-Rad, A.H., Schober, R., et al: ‘Optimal real-time pricing algorithm based on utility maximization for smart grid’. First IEEE Int. Conf. Smart Grid Communications, Gaithersburg, MD, USA, October 2010, pp. 415420.
    6. 6)
      • 6. Tsui, K.M., Chan, S.C.: ‘Demand response optimization for smart home scheduling under real-time pricing’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18121821.
    7. 7)
      • 7. Barbose, G., Goldman, C., Neenan, B.: ‘A survey of utility experience with real time pricing’ (Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2004).
    8. 8)
      • 8. Mohsenian-Rad, A.H., Leon-Garcia, A.: ‘Optimal residential load control with price prediction in real-time electricity pricing environments’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 120133.
    9. 9)
      • 9. Yang, Q., Fang, X.: ‘Demand response under real-time pricing for domestic households with renewable DGs and storage’, IET. Gener. Transm. Distrib., 2017, 11, (8), pp. 19101918.
    10. 10)
      • 10. Gu, C., Yang, W., Song, Y., et al: ‘Distribution network pricing for uncertain load growth using fuzzy set theory’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 19321940.
    11. 11)
      • 11. Zhang, G., Jiang, C., Wang, X., et al: ‘Bidding strategy analysis of virtual power plant considering demand response and uncertainty of renewable energy’, IET. Gener. Transm. Distrib., 2017, 11, (13), pp. 32683277.
    12. 12)
      • 12. Yang, S., Zeng, D., Ding, H., et al: ‘Stochastic security-constrained economic dispatch for random responsive price elastic load and wind power’, IET Renew. Power Gener., 2016, 10, (7), pp. 936943.
    13. 13)
      • 13. Paterakis, N.G., Erdinc, O., Bakirtzis, A.G., et al: ‘Load-following reserves procurement considering flexible demand-side resources under high wind power penetration’, IEEE Trans. Power Syst., 2015, 30, pp. 13371350.
    14. 14)
      • 14. Wang, G., Kekatos, V., Conejo, A.J., et al: ‘Ergodic energy management leveraging resource variability in distribution grids’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 47654775.
    15. 15)
      • 15. Zhang, X., Shahidehpour, M., Alabdulwahab, A., et al: ‘Hourly electricity demand response in the stochastic day-ahead scheduling of coordinated electricity and natural gas networks’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 592601.
    16. 16)
      • 16. Sharifi, R., Anvari-Moghaddam, A., Fathi, S.H., et al: ‘Economic demand response model in liberalised electricity markets with respect to flexibility of consumers’, IET. Gener. Transm. Distrib., 2017, 11, (17), pp. 42914298.
    17. 17)
      • 17. Jiang, C.: ‘A probabilistic bottom-up technique for modeling and simulation of residential distributed harmonic sources’. Ph.D. thesis, University of Alberta, 2011.
    18. 18)
      • 18. Marzband, M., Parhizi, N., Savaghebi, M., et al: ‘Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive architecture’, IEEE Trans. Energy Convers., 2016, 31, pp. 637648.
    19. 19)
      • 19. Zhou, Z., Zhang, J., Liu, P., et al: ‘A two-stage stochastic programming model for the optimal design of distributed energy systems’, Appl. Energy, 2013, 103, pp. 135144.
    20. 20)
      • 20. Kwon, S., Ntaimo, L., Gautam, N.: ‘Optimal day-ahead power procurement with renewable energy and demand response’, IEEE Trans. Power Syst., 2016, 32, (5), pp. 39243933.
    21. 21)
      • 21. Guo, Y., Xiong, J., Xu, S., et al: ‘Two-stage economic operation of microgrid-like electric vehicle parking deck’, IEEE Trans. Smart Grid, 2016, 7, pp. 17031712.
    22. 22)
      • 22. Bhattacharya, A., Kharoufeh, J., Zeng, B.: ‘Managing energy storage in microgrids: a multistage stochastic programming approach’, IEEE Trans. Smart Grid, 2018, 9, (1), pp. 483496.
    23. 23)
      • 23. Mahmoudi, N., Saha, T. K., Eghbal, M.: ‘Wind power offering strategy in day-ahead markets: employing demand response in a two-stage plan’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 18881896.
    24. 24)
      • 24. Talari, S., Yazdaninejad, M., Haghifam, M.-R.: ‘Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14981509.
    25. 25)
      • 25. Ghahremani, E., Kamwa, I.: ‘Maximizing transmission capacity through a minimum set of distributed multi-type facts’. Power and Energy Society General Meeting, San Diego, CA, USA, July 2012, pp. 18.
    26. 26)
      • 26. Richardson, I., Thomson, M., Infield, D., et al: ‘Domestic electricity use: a high-resolution energy demand model’, Energy Build., 2010, 42, (10), pp. 18781887.
    27. 27)
      • 27. Capasso, A., Grattieri, W., Lamedica, R., et al: ‘A bottom-up approach to residential load modeling’, IEEE Trans. Power Syst., 1994, 9, (2), pp. 957964.
    28. 28)
      • 28. United Kingdom time use survey, 2000’. Available at: http://doi.org/10.5255/UKDA-SN-4504-1, 2003.
    29. 29)
      • 29. Zhao, Z., Wu, L., Song, G.: ‘Convergence of volatile power markets with price-based demand response’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21072118.
    30. 30)
      • 30. Shapiro, A., Philpott, A.: ‘A tutorial on stochastic programming’. Available at: www.isye.gatech.edu/people/faculty/AlexShapiro/TutorialSP.pdf, 2007.
    31. 31)
      • 31. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: ‘The sample average approximation method for stochastic discrete optimization’, SIAM J. Optim., 2002, 12, (2), pp. 479502.
    32. 32)
      • 32. Heitsch, H., Römisch, W.: ‘Scenario reduction algorithms in stochastic programming’, Comput. Optim. Appl., 2003, 24, (2–3), pp. 187206.
    33. 33)
      • 33. Birge, J.R., Louveaux, F.: ‘Introduction to stochastic programming’ (Springer Science & Business Media, New York, NY, USA, 2011).
    34. 34)
      • 34. Tometzki, T., Engell, S.: ‘Hybrid evolutionary optimization of two-stage stochastic integer programming problems: an empirical investigation’, Evol. Comput., 2009, 17, (4), pp. 511526.
    35. 35)
      • 35. Micro-hydro systems-a buyer's guide’, in ‘Natural resources’ (Ottawa, ON, Canada, 2004).
    36. 36)
      • 36. Rylander, M. R.: ‘Single-phase nonlinear power electronic loads: modeling and impact on power system transient response and stability’. PhD Thesis, The University of Texas at Austin, 2008.
    37. 37)
      • 37. Alberta electric system operator (AESO)’. Available at: http://ets.aeso.ca.
    38. 38)
      • 38. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    39. 39)
      • 39. Zimmermann, J. P., Evans, M., Griggs, J., et al: ‘Household electricity survey: a study of domestic electrical product usage’ (Intertek Testing & Certification Ltd., Leatherhead, UK, 2012).
    40. 40)
      • 40. Chen, Z., Wu, L., Fu, Y.: ‘Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18221831.
    41. 41)
      • 41. Zhang, D., Fu, Z., Zhang, L.: ‘An improved ts algorithm for loss minimum reconfiguration in large-scale distribution systems’, Electr. Power Syst. Res., 2007, 77, (5), pp. 685694.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5943
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5943
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address