http://iet.metastore.ingenta.com
1887

Utilising reliability-constrained optimisation approach to model microgrid operator and private investor participation in a planning horizon

Utilising reliability-constrained optimisation approach to model microgrid operator and private investor participation in a planning horizon

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A huge motivation has recently made on microgrid (MG) financial issues, aimed to investigate the contribution of MG operator (MGO) and private investor to reach an optimal operational strategy. Motivating the private investors to contribute in an energy production, is a considering benefit sharing factor by MGO to satisfy both of MGO and private investor. In this study, a reliability-constrained optimisation approach is presented to calculate the number and size of MG system components. To this aim, planning problem is solved in two cases; full available state and state with considering random outage of units. Furthermore, all uncertainties of generation units are considered in the problem formulation. Non-sequential Monte Carlo method is used to generate all scenarios. The proposed model simultaneously optimises two objectives, namely the benefits of MGO. The two-stage heuristic method is used to solve the objective function. In the first stage, by utilising genetic algorithm, the solution to form the Pareto optimal front is found. In the second stage, to select the trade-off solution among obtained Pareto solutions, the fuzzy satisfying method has been used. Simulations are carried out in two cases, with and without considering the share of a private investor of MGO's benefit, i.e. β.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5930
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5930
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address