http://iet.metastore.ingenta.com
1887

Lyapunov-based hybrid model predictive control for energy management of microgrids

Lyapunov-based hybrid model predictive control for energy management of microgrids

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an advanced control structure aimed at the optimal economic energy management of a renewable energy-based microgrid. This control scheme is applied to energy optimisation in a microgrid with non-dispatchable renewable sources, such as photovoltaic and wind power generation, as well as dispatchable sources, as distributed generators, hybrid storage systems compound by battery bank, supercapacitors, hydrogen storage unit, and one electric vehicle charging station. The proposed controller consists of a Lyapunov-based hybrid model predictive control based on mixed logical dynamical (MLD) framework. The main contribution of the proposed technique is the assurance of the closed-loop stability and recursive feasibility, by a novel approach focused on MLD models, using ellipsoidal terminal constraints and the Lyapunov decreasing condition. Finally, simulation tests under different operational conditions are performed and the attained results have shown the safe and reliable operation of the proposed control algorithm compared to existing and well-known energy management techniques.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5852
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5852
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address