http://iet.metastore.ingenta.com
1887

access icon free Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network

  • PDF
    5.908574104309082MB
  • XML
    137.8681640625Kb
  • HTML
    113.3916015625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/20/IET-GTD.2018.5847.html;jsessionid=4c1e99mptb4lk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2018.5847&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hernandez, R.R., Easter, S.B., Murphy-Mariscal, M.L., et al: ‘Environmental impacts of utility-scale solar energy’, Renew. Sustain. Energy Rev., 2014, 29, pp. 766779.
    2. 2)
      • 2. Timilsina, G.R., Kurdgelashvili, L., Narbel, P.A.: ‘Solar energy: markets, economics and policies’, Renew. Sustain. Energy Rev., 2012, 16, (1), pp. 449465.
    3. 3)
      • 3. Fonseca, J.G.D., Oozeki, T., Takashima, T., et al: ‘Use of support vector regression and numerically predicted cloudiness to forecast power output of a photovoltaic power plant in Kitakyushu, Japan’, Prog. Photovolt., 2012, 20, (7), pp. 874882.
    4. 4)
      • 4. Jiang, H., Dong, Y.: ‘A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation’, Energy Convers. Manage., 2016, 126, pp. 9911002.
    5. 5)
      • 5. Wolff, B., Kuhnert, J., Lorenz, E., et al: ‘Comparing support vector regression for Pv power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data’, Sol. Energy, 2016, 135, pp. 197208.
    6. 6)
      • 6. De Leone, R., Pietrini, M., Giovannelli, A.: ‘Photovoltaic energy production forecast using support vector regression’, Neural Comput. Appl., 2015, 26, (8), pp. 19551962.
    7. 7)
      • 7. Salcedo-Sanz, S., Casanova-Mateo, C., Munoz-Mari, J., et al: ‘Prediction of daily global solar irradiation using temporal Gaussian processes’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (11), pp. 19361940.
    8. 8)
      • 8. Sheng, H.M., Xiao, J., Cheng, Y.H., et al: ‘Short-term solar power forecasting based on weighted Gaussian process regression’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 300308.
    9. 9)
      • 9. Rohani, A., Taki, M., Abdollahpour, M.: ‘A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (part: I)’, Renew. Energy, 2018, 115, pp. 411422.
    10. 10)
      • 10. Urraca, R., Antonanzas, J., Alia-Martinez, M., et al: ‘Smart baseline models for solar irradiation forecasting’, Energy Convers. Manage., 2016, 108, pp. 539548.
    11. 11)
      • 11. Hassan, M.A., Khalil, A., Kaseb, S., et al: ‘Exploring the potential of tree-based ensemble methods in solar radiation modeling’, Appl. Energy, 2017, 203, pp. 897916.
    12. 12)
      • 12. Nagy, G.I., Barta, G., Kazi, S., et al: ‘Gefcom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach’, Int. J. Forecast., 2016, 32, (3), pp. 10871093.
    13. 13)
      • 13. Bouzerdoum, M., Mellit, A., Pavan, A.M.: ‘A hybrid model (Sarima-Svm) for short-term power forecasting of a small-scale grid-connected photovoltaic plant’, Sol. Energy, 2013, 98, pp. 226235.
    14. 14)
      • 14. De Giorgi, M.G., Malvoni, M., Congedo, P.M.: ‘Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine’, Energy, 2016, 107, pp. 360373.
    15. 15)
      • 15. Li, J.M., Ward, J.K., Tong, J.N., et al: ‘Machine learning for solar irradiance forecasting of photovoltaic system’, Renew. Energy, 2016, 90, pp. 542553.
    16. 16)
      • 16. Huang, C.M., Chen, S.J., Yang, S.P., et al: ‘One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecasting models’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18741882.
    17. 17)
      • 17. Wu, Q.L., Peng, C.Y.: ‘Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm’, Energies, 2016, 9, (4), pp. 119.
    18. 18)
      • 18. De Giorgi, M.G., Congedo, P.M., Malvoni, M., et al: ‘Error analysis of hybrid photovoltaic power forecasting models: a case study of Mediterranean climate’, Energy Convers. Manage., 2015, 100, pp. 117130.
    19. 19)
      • 19. Sivavaraprasad, G., Ratnam, D.V.: ‘Short-term forecasting of ionospheric total electron content over a low-latitude global navigation satellite system station’, IET Radar Sonar Navig.., 2017, 11, (8), pp. 13091320.
    20. 20)
      • 20. Monjoly, S., Andre, M., Calif, R., et al: ‘Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach’, Energy, 2017, 119, pp. 288298.
    21. 21)
      • 21. Gao, X.M., Yang, S.F., Pan, S.B.: ‘Optimal parameter selection for support vector machine based on artificial bee colony algorithm: a case study of grid-connected PV system power prediction’, Comput. Intell. Neurosci., 2017, 2017, pp. 114.
    22. 22)
      • 22. Wang, D.Y., Luo, H.Y., Grunder, O., et al: ‘Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and Bp neural network optimized by firefly algorithm’, Appl. Energy, 2017, 190, pp. 390407.
    23. 23)
      • 23. Abdoos, A.A.: ‘A new intelligent method based on combination of Vmd and Elm for short term wind power forecasting’, Neurocomputing, 2016, 203, pp. 111120.
    24. 24)
      • 24. Wang, D.Y., Wei, S., Luo, H.Y., et al: ‘A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine’, Sci. Total Environ., 2017, 580, pp. 719733.
    25. 25)
      • 25. Yang, W.X., Peng, Z.K., Wei, K.X., et al: ‘Superiorities of variational mode decomposition over empirical mode decomposition particularly in time-frequency feature extraction and wind turbine condition monitoring’, IET Renew. Power Gener., 2017, 11, (4), pp. 443452.
    26. 26)
      • 26. Wang, H.Z., Wang, G.B., Li, G.Q., et al: ‘Deep belief network based deterministic and probabilistic wind speed forecasting approach’, Appl. Energy, 2016, 182, pp. 8093.
    27. 27)
      • 27. Qureshi, A.S., Khan, A., Zameer, A., et al: ‘Wind power prediction using deep neural network based meta regression and transfer learning’, Appl. Soft Comput., 2017, 58, pp. 742755.
    28. 28)
      • 28. Zhao, Z., Chen, W.H., Wu, X.M., et al: ‘Lstm network: a deep learning approach for short-term traffic forecast’, IET Intell. Transp. Syst., 2017, 11, (2), pp. 6875.
    29. 29)
      • 29. Ji, S.W., Xu, W., Yang, M., et al: ‘3d convolutional neural networks for human action recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 221231.
    30. 30)
      • 30. Wang, H.-Z., Li, G.-Q., Wang, G.-B., et al: ‘Deep learning based ensemble approach for probabilistic wind power forecasting’, Appl. Energy, 2017, 188, pp. 5670.
    31. 31)
      • 31. Dragomiretskiy, K., Zosso, D.: ‘Variational mode decomposition’, IEEE Trans. Signal Process., 2014, 62, (3), pp. 531544.
    32. 32)
      • 32. Lahmiri, S.: ‘Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices’, IEEE Syst. J., 2017, 11, (3), pp. 19071910.
    33. 33)
      • 33. Lahmiri, S.: ‘Intraday stock price forecasting based on variational mode decomposition’, J. Comput. Sci., 2016, 12, pp. 2327.
    34. 34)
      • 34. Li, C., Liang, M.: ‘Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction’, Meas. Sci. Technol., 2011, 22, (8), pp. 110.
    35. 35)
      • 35. Daw, N.W.: ‘The foundations of development and deprivation in the visual system’, J. Physiol.-London, 2009, 587, (12), pp. 27692773.
    36. 36)
      • 36. Anthimopoulos, M., Christodoulidis, S., Ebner, L., et al: ‘Lung pattern classification for interstitial lung diseases using a deep convolutional neural network’, IEEE Trans. Med. Imaging, 2016, 35, (5), pp. 12071216.
    37. 37)
      • 37. Zubair, S., Yan, F., Wang, W.W.: ‘Dictionary learning based sparse coefficients for audio classification with max and average pooling’, Digit. Signal Process., 2013, 23, (3), pp. 960970.
    38. 38)
      • 38. Karpathy, A., Toderici, G., Shetty, S., et al: ‘Large-scale video classification with convolutional neural networks’. 2014 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, June 2014, pp. 17251732.
    39. 39)
      • 39. Bergstra, J., Bengio, Y.: ‘Random search for hyper-parameter optimization’, J. Mach. Learn. Res., 2012, 13, pp. 281305.
    40. 40)
      • 40. Steenwijk, M.D., Daams, M., Barkhof, F., et al: ‘Multi-view convolutional neural networks using batch normalization outperform human raters during automatic white matter lesion segmentation’, Mult. Scler. J., 2017, 23, pp. 558559.
    41. 41)
      • 41. Abadi, M.: ‘Tensorflow: learning functions at scale’, ACM Sigplan Not., 2016, 51, (9), pp. 11.
    42. 42)
      • 42. Li, A., Li, Y.X., Li, X.H.: ‘Tensorflow and Keras-based convolutional neural network in cat image recognition’. 2017 2nd Int. Conf. Computational Modeling, Simulation and Applied Mathematics (Cmsam), 2017, pp. 529533.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5847
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5847
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address