Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Incremental PMU placement considering reliability of power system network using analytical hierarchical process

This study presents a methodology for enhancing the observability of interconnected power network with the incorporation of component reliability for incremental phasor measurement units (PMUs) placement. Initially, multiple optimal solutions for complete observability have been determined with the use of genetic algorithm. An overall system reliability index has been proposed for the selection of the most suitable solution among the determined solutions. Furthermore, the ranking of the buses for PMU placement has been performed using the proposed reliability observability criteria. An index determined by series–parallel combinations of different components of the network has been used for this purpose. To achieve effective multi-phasing of PMU placement analytical hierarchical process has been utilised. This strengthens the observability through most reliable buses during the initial phases. The proposed methodology is illustrated on IEEE 14-bus and eastern region Indian power grid 90-bus real system.

References

    1. 1)
      • 25. Chakrabarti, S., Kyriakides, E., Eliades, D.G.: ‘Placement of synchronized measurements for power system observability’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 1219.
    2. 2)
      • 15. Nadia, H., Ahmed, Z.: ‘Optimal PMU placement using topology transformation method in power systems’, J. Adv. Res., 2016, 7, (5), pp. 625634.
    3. 3)
      • 23. Zhao, Y., Yuan, P., Ai, Q., et al: ‘Optimal PMU placement considering topology constraints’, Elsevier Electr. Power Energy Syst., 2015, 73, pp. 240248.
    4. 4)
      • 20. Ahmadi, A., Beromi, Y.A., Moradi, M. ‘Optimal PMU placement for power system observability using binary particle optimization and considering measurement redundancy’, Elsevier Expert Syst. Appl., 2011, 38, (6), pp. 72637269.
    5. 5)
      • 29. MATLAB Optimization User's Guide, 2013.
    6. 6)
      • 17. Chakrabarti, S., Kyriakides, E.: ‘Optimal placement of PMU for power system observability’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 1219.
    7. 7)
      • 10. Gou, B.: ‘Optimal placement of PMU by integer linear programming’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 15251526.
    8. 8)
      • 32. Sajjan, K.S., Mishra, A.K., Kumar, V., et al: ‘Phased optimal PMU placement based on revised analytical hierarchy process’, Electr. Power Compon. Syst., 2016, 44, (9), pp. 10051017.
    9. 9)
      • 42. Gopakumar, P., Chandra, G.S., Reddy, M.J.B.: ‘Optimal redundant placement of PMUs in Indian power grid – northern, eastern and North-eastern regions’, Front. Energy, 2013, 7, (4), pp. 413418.
    10. 10)
      • 2. Phadke, A., Thorp, J., Adamiak, M.: ‘A new measurement technique for tracking voltage phasor, local system frequency, and rate of change of frequency’, IEEE Trans. Power Appar. Syst., 1983, 102, (5), pp. 10251038.
    11. 11)
      • 39. Theodorakatos, N.P.: ‘Application of synchronized phasor measurements units in power systems’, Int. J. Eng. Sci., 2017, 6, (3), pp. 2539.
    12. 12)
      • 14. Ghosh, P.K., Chatterjee, S., Roy, B.K.S.: ‘Optimal PMU placement solution: graph theory and MCDM based approach’, IET Gener. Trans. Distrib., 2017, 11, (13), pp. 33713380.
    13. 13)
      • 34. Ziestsman, J.: ‘Transport corridor decision making with multi-attribute utility theory’, Int. J. Manage Decis. Mak., 2006, 7, (2), pp. 254256.
    14. 14)
      • 18. Peng, C., Sun, H., Guo, J.: ‘Multi-objective optimal PMU placement using non-dominated sorting differential evolution algorithm’, Elsevier Electr. Power Energy Syst., 2010, 32, (8), pp. 886892.
    15. 15)
      • 30. Dua, D., Dambhare, S., Kumar, R., et al: ‘Optimal multistage scheduling of PMU placement: an ILP approach’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 18121820.
    16. 16)
      • 27. Theodorakatos, N.: ‘Optimal phasor measurement unit placement for numerical observability using a two-phase branch-and-bound algorithm’, Int. J. Emerg. Electr. Power Syst., 2018. Available at https://doi.org/10.1515/ijeeps-2017-0231, (Ahead of Print), accessed May 2018.
    17. 17)
      • 9. Baldwin, T.L., Mili, L., Boisen, M.B., et al: ‘Power system observability with minimal phasor measurement placement’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 707715.
    18. 18)
      • 8. Phadke, A., Thorp, J.: ‘History and applications of phasor measurements’. Power Systems Conf. Exposition, Atlanta, GA, USA, 29 October – 1 November 2006, pp. 331335.
    19. 19)
      • 33. Sodhi, R., Srivastava, S.C., Singh, S.N.: ‘Multi-criteria decision-making approach for multi-stage optimal placement of phasor measurement units’, IET Gener. Trans. Distrib., 2011, 5, (2), pp. 181190.
    20. 20)
      • 36. Deep, K., Singh, K.P., Kansal, M.L, et al: ‘A real coded genetic algorithm for solving integer and mixed integer optimization problems’, Appl. Math. Comput., 2009, 212, (22), pp. 505518.
    21. 21)
      • 40. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., et al: ‘Contingency-constrained PMU placement in power networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 516523.
    22. 22)
      • 26. Castillo, E., Conejo, A., Pedregal, P., et al: ‘Building and solving mathematical programming models in engineering and science’ (John Wiley & Sons, 2001).
    23. 23)
      • 37. Aminifar, F., Bagheri-Shouraki, S., Fotuhi-Firuzabad, M., et al: ‘Reliability modeling of PMUs using fuzzy sets’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 23842391.
    24. 24)
      • 6. Cepeda, J.C., Rueda, J.L., Colome, D.G., et al: ‘Real time transient stability assessment based on centre-of-inertia estimation from phasor measure measurement unit records’, IET Gener. Trans. Distrib., 2014, 8, (8), pp. 13631376.
    25. 25)
      • 35. Sharma, C., Tyagi, B.: ‘Ranking of phasor measurement units based on control strategy for small-signal stability’, Int. Trans. Electr. Energy Syst., 2014, 25, (10), pp. 23592375.
    26. 26)
      • 38. Billinton, R., Allan, R.: ‘Reliability evaluation of engineering systems: concepts and technique’ (Plenum, New York, 1994, 2nd edn.).
    27. 27)
      • 41. Belton, V., Gear, A.E.: ‘On a shortcoming of Saaty's method of analytic hierarchies’, Omega, 1983, 11, (3), pp. 228230.
    28. 28)
      • 5. Gou, B., Kavasseri, R.G.: ‘Unified PMU placement for observability and bad data detection in state estimation’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 25732580.
    29. 29)
      • 12. Sajan, K., Tyagi, B.: ‘Optimal placement of PMU with optimal branch current phasors for complete and incomplete observability’. Power and Energy Society General Meeting, Detroit, USA, July 2011, pp. 15.
    30. 30)
      • 13. Li, Q., Cui, T., Weng, Y., et al: ‘An information-theoretic approach to PMU placement in electric power systems’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 446456.
    31. 31)
      • 3. Sivanagaraju, G., Chakrabarti, S., Srivastava, S.C.: ‘Uncertainty in transmission line parameters: ‘estimation and impact on line current differential protection’, IEEE Trans. Instrum. Meas., 2014, 63, (6), pp. 14961504.
    32. 32)
      • 31. Naqui, R., Phadke, A.: ‘Phasor measurement unit placement techniques for complete and incomplete observability’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 23812388.
    33. 33)
      • 24. Babu, R., Bhattacharyya, B.: ‘Phasor measurement unit allocation with different soft computing technique in connected power network’. Michael Faraday IET Int. Summit, Kolkata, India, September 2015.
    34. 34)
      • 28. Messac, A.: ‘Optimization in practice with MATLAB For engineering students and professionals’ (Cambridge University Press, 2015).
    35. 35)
      • 44. Karlof, J.K.: ‘Integer programming: theory and practice’ (CRC Press, 2005).
    36. 36)
      • 4. Korres, G.N., Manousakis, N.M.: ‘State estimation and observability analysis for phasor measurement unit measured systems’, IET Gener. Trans. Distrib., 2012, 6, (9), pp. 902913.
    37. 37)
      • 43. Eastern Region Load Despatch Centre’. Available at http://www.erldc.org/List%20of%20Important%20Element%20(2).pdf, accessed November 2017.
    38. 38)
      • 11. Gou, B.: ‘Generalized integer linear programming formulation for optimal PMU placement’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 10991104.
    39. 39)
      • 21. Theodorakatos, N.P., Manousakis, N.M., Korres, G.N.: ‘Optimal placement of PMUs in power systems using binary integer programming and genetic algorithm’. IET Proc. MedPower, Athens, Greece, 2014.
    40. 40)
      • 16. Korkali, M., Abur, A.: ‘Placement of PMUs with channel limits’. Proc. IEEE Power Engineering Society General Meeting, Calgary, AB, Canada, July 2009.
    41. 41)
      • 7. Ayala, G.S., Aguerc, J.R., Elizondo, D., et al: ‘Current trends on application on PMUs in distribution systems’. Proc. IEEE Innovative Smart Grid Technologies Conf., Washington, DC, USA, February 2013, pp. 16.
    42. 42)
      • 19. Koutsoukis, N.C., Manousakis, N.M., Georgilakis, P.S., et al: ‘Numerical observability method for optimal phasor measurement units placement using recursive tabu search method’, IET Gener. Trans. Distrib., 2013, 7, (4), pp. 347356.
    43. 43)
      • 1. Phadke, A.: ‘Synchronized phasor measurements in power systems’, IEEE Comput. Appl. Power, 1993, 6, (2), pp. 1015.
    44. 44)
      • 22. Aminifar, F., Lucas, C., Khodaei, A., et al: ‘Optimal placement of phasor measurement units using immunity genetic algorithm’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10141020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5630
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5630
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address