Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Meta-heuristic technique for network reconfiguration in distribution system with photovoltaic and D-STATCOM

This study presents a reconfiguration methodology based on a multi-objective modified flower pollination algorithm (MO-MFPA) that aims to achieve the power loss reduction, minimum load balancing index, and maximum voltage profile in radial distribution networks with photovoltaic (PV) arrays and distribution static compensator (D-STATCOM). Here, PV array is considered as distributed generation and D-STATCOM acts as a distribution flexible AC transmission system. The MO-MFPA is a meta-heuristic technique based on the combination of flower pollination algorithm and cloning selection algorithm. A reconfiguration is done through changing the tie and sectional line positions in the distribution system. At the time of reconfiguration, movement of load node to a set of power nodes secures the radial structure of the network. Voltage stability index is used to pre-identify the most candidate buses for placing PV arrays and D-STATCOM. Then the proposed MO-MFPA is employed to deduce the size and locations of PV arrays and D-STATCOM from the elected buses. For more practical applications, different cases of reconfiguration, PV, and D-STATCOM installation are considered to evaluate the performance approach at different load factors. The proposed method has been effectively tested on IEEE 33, 69, and 118-bus distribution systems and encouraging results have been obtained.

References

    1. 1)
      • 6. Karar, M., Naoto, Y., Abdella, A.: ‘Optimal distributed generation allocation in distribution systems for loss minimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 960969.
    2. 2)
      • 16. Hajar, B.T., Mohd, H.A., Rizwan, M.: ‘Simultaneous reconfiguration, optimal placement of D-STATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach’, IEEE Trans. Sust. Energy, 2015, 6, (1), pp. 210218.
    3. 3)
      • 17. Thuan, T.N., Anh, V.T.: ‘Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm’, Int. J. Electr. Power Energy Syst., 2015, 68, pp. 233242.
    4. 4)
      • 23. Arash, L., Hossein, A.: ‘A discrete teaching–learning-based optimization algorithm to solve distribution system reconfiguration in presence of distributed generation’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 264273.
    5. 5)
      • 22. Rajaram, R., Sathish Kumar, K., Rajasekar, N.: ‘Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with distributed generation (DG)’, Energy Rep., 2015, 1, pp. 116122.
    6. 6)
      • 20. Nabil, E.: ‘A modified flower pollination algorithm for global optimization’, Expert Syst. Appl., 2016, 57, pp. 192203.
    7. 7)
      • 19. Xin-She, Y., Mehmet, K., Xingshi, H.: ‘Multi-objective flower algorithm for optimization’, Procedia Comput. Sci., 2013, 18, pp. 861868.
    8. 8)
      • 10. Ledwich, G., Ghosh, A.: ‘Flexible D-STATCOM operating in voltage or current control mode’, IEE Proc Transm. Distrib., 2002, 149, pp. 215224.
    9. 9)
      • 25. Fahad, I., Mohd, T.K., Anwar, S.S.: ‘Optimal placement of DG and D-STATCOM for loss reduction and voltage profile improvement’, Alexandria Eng. J., 2017, doi: 10.1016/j.aej.2017.03.002.
    10. 10)
      • 24. Devabalaji, K.R., Ravi, K.: ‘Optimal size and siting of multiple DG and D-STATCOM in radial distribution system using bacterial foraging optimization algorithm’, Ain Shams Eng. J., 2016, 7, pp. 959971.
    11. 11)
      • 4. Paterakis, N.G., Andrea, M., Santos, S.F., et al: ‘Multi-objective reconfiguration of radial distribution systems using reliability indices’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 10481062.
    12. 12)
      • 9. Taher, N., Mohammad, R.N., Ebrahim, F., et al: ‘A new evolutionary optimization algorithm for optimal power flow in a power system involving unified power flow controller’, Energy Educ. Sci. Technol. Part A: Energy Sci. Res., 2012, 29, (2), pp. 901912.
    13. 13)
      • 11. Seyed, A.T., Seyed, A.A.: ‘Optimal location and sizing of D-STATCOM in distribution systems by immune algorithm’, Electr. Power Energy Syst., 2014, 60, pp. 3444.
    14. 14)
      • 21. Jeyadevi, S., Baskar, S., Babulal, C.K., et al: ‘Solving multiobjective optimal reactive power dispatch using modified NSGA-II’, Int. J. Electr. Power Energy Syst., 2011, 33, pp. 219228.
    15. 15)
      • 1. Rayapudi, S.R., Sadhu, V.L.N., Manyala, R.R., et al: ‘Optimal network reconfiguration of large-scale distribution system using harmony search algorithm’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 10801088.
    16. 16)
      • 18. Bahram, P., Peyman, K., Gharehpetian, G.B., et al: ‘Optimal allocation and sizing of DG units considering voltage losses and load variations’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 4252.
    17. 17)
      • 12. Devi, S., Geethanjali, M.: ‘Optimal location and sizing determination of distributed generation and D-STATCOM using particle swarm optimization algorithm’, Int. J. Electr. Power Energy Syst., 2014, 62, pp. 562570.
    18. 18)
      • 7. Subhodip, S., Vivekananda, M.: ‘Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 36713680.
    19. 19)
      • 14. Baran, M.E., Wu, F.: ‘Network reconfiguration in distribution system for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    20. 20)
      • 8. Esmaeil, M.M., Mohammad, R.N., Mohammad, H.K., et al: ‘Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operating cost using an enhanced evolutionary algorithm at the presence of distribution generations’, Int. J. Electr. Power Energy Syst., 2016, 76, pp. 3543.
    21. 21)
      • 2. Ikbal, A., Mini, S.T., Pawan, K.: ‘Energy efficient reconfiguration for practical load combinations in distribution systems’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 10511060.
    22. 22)
      • 13. Mohamed, I.A., Kowsalya, M., Kothari, D.P.: ‘A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 461472.
    23. 23)
      • 27. Das, D.: ‘Optimal placement of capacitors in radial distribution system using a fuzzy-GA method’, Int. J. Electr. Power Energy Syst., 2008, 30, pp. 361367.
    24. 24)
      • 26. Mohammad, M., Mahyar, A.A., Mohammadi, R.: ‘Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (D-STATCOM) for loss reduction of distribution network considering reconfiguration’, J. Cent. South Univ., 2017, 24, pp. 245258.
    25. 25)
      • 28. Dong, Z., Zhengcai, F., Liuchun, Z.: ‘An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems’, Electr. Power Syst. Res., 2007, 77, pp. 685694.
    26. 26)
      • 15. Srinivasa, R.R., Ravindra, K., Satish, K., et al: ‘Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 317324.
    27. 27)
      • 3. Alonso, F.R., Oliveira, D.Q., Zambroni de Souza, A.C.: ‘Artificial immune systems optimization approach for multi-objective distribution system reconfiguration’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 840847.
    28. 28)
      • 5. Komail, N., Farsangi, M.M., Hossein, N.P., et al: ‘An improved multi-objective harmony search for optimal placement of DGs in distribution systems’, IEEE Trans. Smart Grid., 2013, 4, (1), pp. 557567.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5629
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address