http://iet.metastore.ingenta.com
1887

Efficient method to identify saddle-node and limit-induced bifurcation points of power system

Efficient method to identify saddle-node and limit-induced bifurcation points of power system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High intermittency in today's renewable-rich power systems, and the prohibitive cost of upgrading the network infrastructure along with the load growth, has rendered voltage instability an imminent threat for many power systems. This necessitates faster and more efficient ways of identifying the voltage stability (VS) limits, associated with specific bifurcation points of power system model, which are suitable for real-time applications. To date, continuation power flow (CPF) has conventionally been used to identify bifurcation points of power systems, through plotting power–voltage (PV) curves. However, existing CPF methods are complex and computationally demanding. To tackle this issue, in this study, accurate identification of both saddle-node and limit-induced bifurcation points of power systems is carried out by using a new and efficient continuous power flow algorithm, in which all the complexities associated with the existing CPF methods are relaxed. Low execution time (as compared to the existing CPF methods), ease of implementation, and automated applicability, make the proposed algorithm highly suitable for fast and accurate VS assessment of renewable-rich, uncertain, power systems. Experiments, carried out on several different size power systems, verify that the proposed method can be effectively used to identify the VS limits of practical real-life power systems, despite its ease of implementation and lower computational burden.

References

    1. 1)
      • 1. Avalos, R. J., Cañizares, C. A., Milano, F., et al: ‘Equivalency of continuation and optimization methods to determine saddle-node and limit-induced bifurcations in power systems’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2009, 56, (1), pp. 210223.
    2. 2)
      • 2. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    3. 3)
      • 3. Tamimi, B., Canizares, C. A., Vaez-Zadeh, S.: ‘Effect of reactive power limit modeling on maximum system loading and active and reactive power markets’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 11061116.
    4. 4)
      • 4. Acharya, N. V., Kavasseri, R. G.: ‘A faster continuation power flow in rectangular coordinates for voltage stability assessment’. Power and Energy Society General Meeting (PESGM), Boston, MA, USA, July 2016, pp. 15.
    5. 5)
      • 5. Tam, S.: ‘Managing voltage/stability constraints at PJM’, 2017. Available at: www.ferc.gov/CalendarFiles/20120503131647-PJM.pdf [online].
    6. 6)
      • 6. Xu, P., Wang, X., Ajjarapu, V.: ‘Continuation power flow with adaptive stepsize control via convergence monitor’, IET Gener. Transm. Distrib., 2012, 6, (7), pp. 673679.
    7. 7)
      • 7. Neto, A. B., de Mello Magalhaes, E., Alves, D. A.: ‘Dishonest newton method applied in continuation power flow through a geometric parameterization technique’, IEEE Latin Am. Trans., 2016, 14, (1), pp. 161170.
    8. 8)
      • 8. Venikov, V., Stroev, V.: ‘Estimation of electrical power system steady-state stability in load flow calculations’, IEEE Trans. Power Appar. Syst., 1975, 94, (3), pp. 10341041.
    9. 9)
      • 9. Iwamoto, S., Tamura, Y.: ‘A load flow calculation method for ill-conditioned power systems’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (4), pp. 17361743.
    10. 10)
      • 10. Velayati, M. H., Amjady, N., Khajevandi, I.: ‘Prediction of dynamic voltage stability status based on hopf and limit induced bifurcations using extreme learning machine’, Int. J. Electr. Power Energy Syst., 2015, 69, pp. 150159.
    11. 11)
      • 11. Dobson, I., Lu, L.: ‘Voltage collapse precipitated by the immediate change in stability when generator reactive power limits are encountered’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1992, 39, (9), pp. 762766.
    12. 12)
      • 12. Alves, D. A., da Silva, L. C., Castro, C. A., et al: ‘Alternative parameters for the continuation power flow method’, Electr. Power Syst. Res., 2003, 66, (2), pp. 105113.
    13. 13)
      • 13. Matarucco, R., Neto, A. B., Alves, D.: ‘Assessment of branch outage contingencies using the continuation method’, Int. J. Electr. Power Energy Syst., 2014, 55, pp. 7481.
    14. 14)
      • 14. Flueck, A. J., Dondeti, J. R.: ‘A new continuation power flow tool for investigating the nonlinear effects of transmission branch parameter variations’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 223227.
    15. 15)
      • 15. Nino, E., Castro, C., da Silva, L., et al: ‘Continuation load flow using automatically determined branch megawatt losses as parameters’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (3), pp. 300308.
    16. 16)
      • 16. Garbelini, E., Alves, D. A., Neto, A. B., et al: ‘An efficient geometric parameterization technique for the continuation power flow’, Electr. Power Syst. Res., 2007, 77, (1), pp. 7182.
    17. 17)
      • 17. Alves, D. A., da Silva, L. C., Castro, C. A., et al: ‘Continuation fast decoupled power flow with secant predictor’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10781085.
    18. 18)
      • 18. Yang, X., Zhou, X., Ma, Y., et al: ‘Asymptotic numerical method for continuation power flow’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 670679.
    19. 19)
      • 19. Canizares, C. A., Alvarado, F. L.: ‘Point of collapse and continuation methods for large ac/dc systems’, IEEE Trans. Power Syst., 1993, 8, (1), pp. 18.
    20. 20)
      • 20. Hiskens, I., Chakrabarti, B.: ‘Direct calculation of reactive power limit points’, Int. J. Electr. Power Energy Syst., 1996, 18, (2), pp. 121129.
    21. 21)
      • 21. Yorino, N., Li, H.-Q., Sasaki, H.: ‘A predictor/corrector scheme for obtaining q-limit points for power flow studies’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 130137.
    22. 22)
      • 22. Cao, G., Chen, C.: ‘Novel techniques for continuation method to calculate the limit-induced bifurcation of power flow equation’, Electr. Power Compon. Syst., 2010, 38, (9), pp. 10611075.
    23. 23)
      • 23. Canizares, C. A., Mithulananthan, N., Berizzi, A., et al: ‘On the linear profile of indices for the prediction of saddle-node and limit-induced bifurcation points in power systems’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2003, 50, (12), pp. 15881595.
    24. 24)
      • 24. Jalali, A., Aldeen, M.: ‘Novel continuation power flow algorithm’. IEEE PES Int. Conf. on Power Systems Technology (POWERCON), Wollongong, NSW, Australia, 28 September - 1 October 2016.
    25. 25)
      • 25. Aldeen, M., Saha, S., Alpcan, T., et al: ‘New online voltage stability margins and risk assessment for multi-bus smart power grids’, Int. J. Control, 2015, 88, (7), pp. 13381352.
    26. 26)
      • 26. Power systems test case archive’, 2017. Available at: https://www2.ee.washington.edu/research/pstca/, [online].
    27. 27)
      • 27. Gao, B., Morison, G., Kundur, P.: ‘Voltage stability evaluation using modal analysis’, IEEE Trans. Power Syst., 1992, 7, pp. 15291542.
    28. 28)
      • 28. Alves, D., Da Silva, L., Castro, C., et al: ‘Parameterized fast decoupled power flow methods for obtaining the maximum loading point of power systems: part I. Mathematical modeling’, Electr. Power Syst. Res., 2004, 69, (1), pp. 93104.
    29. 29)
      • 29. Deng, J., Chiang, H.: ‘Convergence region of newton iterative power flow method: numerical studies’, J. Appl. Math., 2013, 2013, pp. 112.
    30. 30)
      • 30. Milano, F.: ‘Continuous newton's method for power flow analysis’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 5057.
    31. 31)
      • 31. Zimmerman, R. D., Murillo-Sánchez, C. E., Thomas, R. J.: ‘Matpower: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5613
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5613
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address