Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free A scenario-based robust investment planning model for multi-type distributed generation under uncertainties

This paper presented a scenario-based robust distributed generation investment planning (DGIP) model, which considered the uncertainties of wind turbine (WT) generation, photovoltaic (PV) generation and load demand. The robust economic model aims to maximize the net present value (NPV) from the distribution network operator's (DNO's) perspective. The uncertainties are described by an uncertainty matrix based on a heuristic moment matching (HMM) method that captures the stochastic features, i.e. expectation, standard deviation, skewness and kurtosis. The notable feature of the HMM method is that it diminishes the computational burden considerably by representing the uncertainties through a reduced number of representative scenarios. The uncertainty matrix is integrated with deterministic power flow equations to formulate a cost-benefit analysis based robust DGIP model with the objective of maximizing the DNO's net present value. The effectiveness of the proposed DGIP model is firstly verified in a 53-bus distribution test feeder, and then its scalability is further validated in a 138-bus distribution network. The numerical results confirm that the proposed DGIP solution is more robust for all representative network scenarios against the deterministic solution.

References

    1. 1)
      • 9. Munoz-Delgado, G., Contreras, J., Arroyo, J.M.: ‘Joint expansion planning of distributed generation and distribution networks’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 25792590.
    2. 2)
      • 13. Ahmadigorji, M., Amjady, N.: ‘A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm’, Energy, 2016, 102, pp. 199215.
    3. 3)
      • 25. Romero, R., Franco, J.F., Leao, F.B., et al: ‘A new mathematical model for the restoration problem in balanced radial distribution systems’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 12591268.
    4. 4)
      • 3. Yang, Q., Barria, J.A., Green, T.C.: ‘Communication infrastructures for distributed control of power distribution networks’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 316327.
    5. 5)
      • 15. IBM Corp., IBM: ‘V12. 1: user's manual for CPLEX’, Int. Bus. Mach. Corp., 2009, 12, (1), p. 481.
    6. 6)
      • 19. Wei, H., Sasaki, H., Kubokawa, J., et al: ‘Large scale hydrothermal optimal power flow problems based on interior point nonlinear programming’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 396403.
    7. 7)
      • 23. Mohammadi, M., Hosseinian, S.H., Gharehpetian, G.B.: ‘GA-based optimal sizing of microgrid and DG units under pool and hybrid electricity markets’, Int. J. Electr. Power Energy Syst., 2012, 35, (1), pp. 8392.
    8. 8)
      • 14. Lofberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. 2004 IEEE Int. Conf. Computer Aided Control Systems Design, New Orleans, LA, USA, September 2004, pp. 284289.
    9. 9)
      • 16. Kaut, M., Wallace, S.W.: ‘A heuristic for moment-matching’, Comput. Optim. Appl., 2003, 24, pp. 169185.
    10. 10)
      • 12. Ganguly, S., Samajpati, D.: ‘Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 688697.
    11. 11)
      • 27. Generation: ‘Electric Reliability Council of Texas, Inc.’. Available at http://www.ercot.com/gridinfo/generation, accessed 20 October 2017.
    12. 12)
      • 10. Sadeghi, M., Kalantar, M.: ‘Multi types DG expansion dynamic planning in distribution system under stochastic conditions using covariance matrix adaptation evolutionary strategy and Monte-Carlo simulation’, Energy Convers. Manag., 2014, 87, pp. 455471.
    13. 13)
      • 8. Kirthiga, M.V., Daniel, S.A., Gurunathan, S.: ‘A methodology for transforming an existing distribution network into a sustainable autonomous micro-grid’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 3141.
    14. 14)
      • 26. Bazilian, M., Onyeji, I., Liebreich, M., et al: ‘Re-considering the economics of photovoltaic power’, Renew. Energy, 2013, 53, pp. 329338.
    15. 15)
      • 20. Santos, S.F., Fitiwi, D.Z., Bizuayehu, A.W., et al: ‘Optimal integration of RES-based DGs with reactive power support capabilities in distribution network systems’. 13th IEEE Int. Conf. on the European Energy Market, Porto, July 2016, pp. 15.
    16. 16)
      • 6. Shivaie, M., Ameli, M.T., Sepasian, M.S., et al: ‘A multistage framework for reliability-based distribution expansion planning considering distributed generations by a self-adaptive global-based harmony search algorithm’, Reliab. Eng. Syst. Saf., 2015, 139, pp. 6881.
    17. 17)
      • 1. El-khattam, W., Hegazy, Y.G., Salama, M.M.A.: ‘An integrated distributed generation optimization model for distribution system planning’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 11581165.
    18. 18)
      • 18. Ehsan, A., Yang, Q.: ‘Robust distribution system planning considering the uncertainties of renewable distributed generation and electricity demand’. 1st IEEE Conf. on Energy Internet and Energy System Integration, Beijing, November 2017.
    19. 19)
      • 24. Taylor, J.A., Hover, F.S.: ‘Convex models of distribution system reconfiguration’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14071413.
    20. 20)
      • 4. Santos, S.F., Fitiwi, D.Z., Bizuayehu, A.W., et al: ‘Novel multi-stage stochastic DG investment planning with recourse’, IEEE Trans. Sustain. Energy, 2016, 3029, pp. 164178.
    21. 21)
      • 5. Khodaei, A., Bahramirad, S., Shahidehpour, M.: ‘Microgrid planning under uncertainty’, IEEE Trans. Power Syst., 2014, 30, (5), pp. 24172425.
    22. 22)
      • 21. Hung, D.Q., Mithulananthan, N., Lee, K.Y.: ‘Determining PV penetration for distribution systems with time-varying load models’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30483057.
    23. 23)
      • 2. Ehsan, A., Yang, Q.: ‘Optimal integration and planning of renewable distributed generation in the power distribution networks: a review of analytical techniques’, Appl. Energy, 2018, 210, pp. 4459.
    24. 24)
      • 22. Blank, L., Tarquin, A.: ‘Engineering Economy’ (McGraw-Hill, New York, NY, USA, 2012).
    25. 25)
      • 7. Li, J., Ye, L., Zeng, Y., et al: ‘A scenario-based robust transmission network expansion planning method for consideration of wind power uncertainties’, CSEE J. Power Energy Syst., 2016, 2, (1), pp. 1118.
    26. 26)
      • 11. Montoya-Bueno, S., Munoz, J.I., Contreras, J.: ‘A stochastic investment model for renewable generation in distribution systems’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 14661474.
    27. 27)
      • 17. Wu, T., Yang, Q., Bao, Z., et al: ‘Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles’, IEEE Trans. Smart Grid, 2013, 4, (3), pp. 14531463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5602
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5602
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address