http://iet.metastore.ingenta.com
1887

Load cycling of underground distribution cables including thermal soil resistivity variation with soil temperature and moisture content

Load cycling of underground distribution cables including thermal soil resistivity variation with soil temperature and moisture content

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As it is known the load of distribution cables is not constant with respect to the daytime, increasing the current in some hours may lead to an increase of soil surrounding the cable resistivity due to the migration of soil moisture content. Formation of dry zones may cause failure of cable insulation. Also because the soil thermal properties change with time according to the weather conditions of different seasons, the current capacity changes significantly from time to time. This paper studies the effect of dry zone formation during load cycling of underground cables on their temperature rise and the temperature distribution in the surrounding which is not considered by IEC 60853-2. The thermal model of the cables using the thermoelectric equivalent method is modified by including the thermal soil resistivity variation with soil temperature and moisture content. The finite element method is used also in this study to obtain heat map of the cable and surrounding soil. Additionally, experimental work of three soil types was investigated to study the effect of temperature and moisture content variation on the soil thermal resistivity and the dry zone formation of each soil type. Field measurements of temperature distribution surrounding the cables are done.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5589
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5589
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address