http://iet.metastore.ingenta.com
1887

access icon openaccess Electric vehicle charging system model for accurate electricity system planning

  • PDF
    4.500256538391113MB
  • HTML
    60.53125Kb
  • XML
    58.65234375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/17/IET-GTD.2018.5580.html;jsessionid=3mutm1ph7aep2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2018.5580&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hu, J., Morais, H., Lind, M., et al: ‘Multi-agent based modeling for electric vehicle integration in a distribution network operation’, Electr. Power Syst. Res., 2016, 136, pp. 341351, doi: 10.1016/j.epsr.2016.03.014.
    2. 2)
      • 2. Wang, M., Mu, Y., Jia, H., et al: ‘Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles’, Appl. Energy, 2017, 185, (2), pp. 16731683, doi: 10.1016/j.apenergy.2016.02.008.
    3. 3)
      • 3. Purvins, A., Sumner, M.: ‘Optimal management of stationary lithium-ion battery system in electricity distribution grids’, J. Power Sources, 2013, 242, pp. 742755, doi: 10.1016/j.jpowsour.2013.05.097.
    4. 4)
      • 4. Fotouhi, A., Auger, D. J., Propp, K., et al: ‘A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur’, Renew. Sust. Energy Rev., 2016, 56, pp. 10081021, doi: 10.1016/j.rser.2015.12.009.
    5. 5)
      • 5. Zhao, Y., Noori, M., Tatari, O.: ‘Vehicle to grid regulation services of electric delivery trucks: economic and environmental benefit analysis’, Appl. Energy, 2016, 170, pp. 161175, doi: 10.1016/j.apenergy.2016.02.097.
    6. 6)
      • 6. Madina, C., Zamora, I., Zabala, E.: ‘Methodology for assessing electric vehicle charging infrastructure business models’, Energy. Policy., 2016, 89, pp. 284293, doi: 10.1016/j.enpol.2015.12.007.
    7. 7)
      • 7. He, S.Y., Kuo, Y.-H., Wu, D.: ‘Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: a case study of Beijing, China’, Transp. Res. C, Emerg. Technol., 2016, 67, pp. 131148, doi: 10.1016/j.trc.2016.02.003.
    8. 8)
      • 8. Adepetu, A., Keshav, S., Arya, V.: ‘An agent-based electric vehicle ecosystem model: San Francisco case study’, Transp. Policy, 2016, 46, pp. 109122, doi: 10.1016/j.tranpol.2015.11.012.
    9. 9)
      • 9. Purvins, A., L'Abbate, A.: ‘Automated energy management in distributed electricity systems: an EEPOS approach’, Int. J. Green Energy, 2017, 14, (12), pp. 10341047, doi: 10.1080/15435075.2017.1355309.
    10. 10)
      • 10. Cui, X., Shen, W., Zhang, Y., et al: ‘A novel active online state of charge based balancing approach for lithium-ion battery packs during fast charging process in electric vehicles’, Energies, 2017, 10, (11), p. 1766, doi: 10.3390/en10111766.
    11. 11)
      • 11. Richtek Technology: ‘Designing applications with Li-ion batteries’. Available at: https://www.richtek.com/battery-management/en/designing-liion.html, accessed July 2018.
    12. 12)
      • 12. Storage Battery Systems: ‘Small rechargeable battery cells & packs’. Available at: https://www.sbsbattery.com/products-services/by-product/batteries/small-rechargeable-sealed-lead-acid-battery-cells-packs.html, accessed July 2018.
    13. 13)
      • 13. Papaioannou, I.T., Purvins, A., Demoulias, C.S.: ‘Reactive power consumption in photovoltaic inverters: a novel configuration for voltage regulation in low-voltage radial feeders with no need for central control’, Prog. Photovol., Res. Appl., 2015, 23, (5), pp. 611619.
    14. 14)
      • 14. Jian, L., Xue, H., Xu, G., et al: ‘Regulated charging of plug-in hybrid electric vehicles for minimizing load variance in household smart microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 32183226, doi: 10.1109/TIE.2012.2198037.
    15. 15)
      • 15. Sanchez-Martin, P., Sanchez, G., Morales-Espana, G.: ‘Direct load control decision model for aggregated EV charging points’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15771584, doi: 10.1109/TPWRS.2011.2180546.
    16. 16)
      • 16. Yoshimi, K., Osawa, M., Yamashita, D., et al: ‘Practical storage and utilization of household photovoltaic energy by electric vehicle battery’. Proc. IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, January 16–20, 2012, doi: 10.1109/ISGT.2012.6175688.
    17. 17)
      • 17. Vandenbergh, M.: ‘Solar photovoltaic production at JRC Petten’. Available at https://ses.jrc.ec.europa.eu/publications/reports/solar-photovoltaic-production-jrc-petten-%E2%80%93-monitoring-report, accessed July 2018.
    18. 18)
      • 18. Papaioannou, I.T., Purvins, A., Tzimas, E.: ‘Demand shifting analysis at high penetration of distributed generation in low voltage grids’, Electr. Power Energy Syst., 2013, 44, (1), pp. 540546, doi: 10.1016/j.ijepes.2012.07.054.
    19. 19)
      • 19. Papaioannou, I.T., Purvins, A.: ‘A methodology to calculate maximum generation capacity in low voltage distribution feeders’, Electr. Power Energy Syst., 2014, 57, pp. 141147, doi: 10.1016/j.ijepes.2013.11.047.
    20. 20)
      • 20. JRC, Smart Grids Interoperability Laboratory: Available at https://ec.europa.eu/jrc/en/research-facility/european-interoperability-centre-electric-vehicles-and-smart-grids, accessed July 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5580
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5580
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address