http://iet.metastore.ingenta.com
1887

Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm

Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To further improve fault diagnosis accuracy, a new hybrid feature selection approach combined with a genetic algorithm (GA) and support vector machine (SVM) is presented in this study. Adaptive synthetic technique and arctangent transformation method are adopted to improve the statistical property of the training set (IEC TC10 dataset). Five filter methods based on different evaluation metrics are employed to rank 48 input features derived from dissolved gas analysis (DGA). Then, feature combination methods are applied to aggregate feature ranks and form a lower-dimension candidate feature subset. The GA–SVM model is implemented to optimise parameters and select optimal feature subsets. 5-fold cross-validation accuracy of the GA-SVM is used to evaluate fault diagnosis capability of feature subsets and finally, a novel subset is determined as the optimal feature subset. Accuracy comparison manifests the superiority of the optimal feature subsets over that of conventional approaches. Besides, generalisation and robustness of the optimal subset are validated by testing DGA samples from the local power utility. Results indicate that the optimal feature subset obtained by the proposed method can significantly improve the accuracies of power transformer fault diagnosis.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5482
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5482
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address