Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modified affine arithmetic based continuation power flow analysis for voltage stability assessment under uncertainty

Continuation power flow (CPF) analysis has been used in the literature to determine the voltage collapse point from active power versus voltage curves (PV curves) for steady-state voltage stability assessment. Affine arithmetic-based (AA) CPF analysis to determine PV curve bounds under uncertainty in power generation was introduced in the literature to overcome the problem of large computational time with Monte Carlo (MC) simulations, by getting a faster solution with a reasonably good accuracy. However, AA operations lead to more noise terms and hence overestimation of bounds. In the present work, a modified AA (modAA)-based CPF analysis is proposed to determine PV curve bounds by considering uncertainties associated with active and reactive power injections at all buses in the system. The proposed method reduces the overestimation caused by the AA operations and gives more accurate solution bounds. The proposed modAA-based CPF analysis is tested on 5-bus test case, IEEE 57, European 1354 and Polish 2383-bus systems. The simulation results with the proposed method are compared with MC simulations and AA-based CPF analysis to show the efficacy of the proposed method.

References

    1. 1)
      • 12. Greene, S., Dobson, S.G., Alvarado, F.: ‘Sensitivity of transfer capability margins with a fast formula’, IEEE Trans. Power Syst., 2002, 17, (1), pp. 3440.
    2. 2)
      • 18. de Figueiredo, L.H., Stolfi, J.: ‘Affine arithmetic: concepts and applications’, Numer. Algorithms, 2004, 37, (1), pp. 147158.
    3. 3)
      • 22. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    4. 4)
      • 17. Ma, J.D., Rutenbar, R.A.: ‘Fast interval-valued statistical modeling of interconnect and effective capacitance’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2006, 25, (4), pp. 710724.
    5. 5)
      • 19. Mason, J., Handscomb, D.: ‘Chebyshev polynomials’ (Chapman Hall/CRC, Boca Raton, FL, USA, 2002).
    6. 6)
      • 11. Greene, S., Dobson, S.G., Alvarado, F.: ‘Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 262272.
    7. 7)
      • 7. da Silva, A.L., Coutinho, I., de Souza, A.Z., et al: ‘Voltage collapse risk assessment’, Electr. Power Syst. Res., 2000, 54, (3), pp. 221227.
    8. 8)
      • 5. Ju, Y., Wu, W., Zhang, B., et al: ‘Continuation power flow based on a novel local geometric parameterisation approach’, IET Gener. Transm. Distrib., 2014, 8, (5), pp. 811818.
    9. 9)
      • 16. Munoz, J., Canizares, C., Bhattacharya, K., et al: ‘An affine arithmetic-based method for voltage stability assessment of power systems with intermittent generation sources’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 44754487.
    10. 10)
      • 13. Senthil Kumar, S., Ajay-D-Vimal, R.P.: ‘Fuzzy logic based stability index power system voltage stability enhancement’, Int. J. Comput. Electr. Eng., 2010, 2, (1), pp. 2431.
    11. 11)
      • 9. Chun-Lien, S., Chan-Nan, L.: ‘Two-point estimate method for quantifying transfer capability uncertainty’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 573579.
    12. 12)
      • 15. Vaccaro, A., Canizares, C.A.: ‘An affine arithmetic-based framework for uncertain power flow and optimal power flow studies’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 274288.
    13. 13)
      • 10. Zhang, J., Dobson, I., Alvarado, F.L.: ‘Quantifying transmission reliability margin’, Int. J. Electr. Power Energy Syst., 2004, 26, (9), pp. 697702.
    14. 14)
      • 4. Neto, A.B., Alves, D.A.: ‘Improved geometric parameterisation techniques for continuation power flow’, IET Gener. Transm. Distrib., 2010, 4, (12), pp. 13491359.
    15. 15)
      • 14. Vaccaro, A., Canizares, C.A., Villacci, D.: ‘An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 624632.
    16. 16)
      • 21. Power systems test case archive. Available at http://www2.ee.washington.edu/research/pstca/, accessed February 2018.
    17. 17)
      • 1. Voltage stability assessment: concepts, practices and tools’, IEEE/PES Power System Stability Subcommittee, Technical Report, August 2002.
    18. 18)
      • 8. Rodrigues, A., Prada, R., Da Guia da Silva, M.: ‘Voltage stability probabilistic assessment in composite systems: modeling unsolvability and controllability loss’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 15751588.
    19. 19)
      • 2. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    20. 20)
      • 3. Chiang, H.-D., Flueck, A.J., Shah, K.S., et al: ‘CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 623634.
    21. 21)
      • 20. Duncan-Glover, J., Sarma, S.S., Overbye, T.: ‘Power system analysis and design’ (CENGAGE Learning, Independence, KY, USA, 2008).
    22. 22)
      • 6. Mehta, D., Nguyen, H.D., Turitsyn, K.: ‘Numerical polynomial homotopy continuation method to locate all the power flow solutions’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 29722980.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5479
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5479
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address