Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-linear dynamics based sub-synchronous resonance index by using power system measurement data

This study proposes a time-series analysis approach and a non-linear dynamics originated method to detect sub-synchronous oscillation in power systems. Mathematical expressions of the fundamental instantaneous signal and sample discrete signal of peak values are derived to examine the phenomenon of interaction between power system components. The results of the circulating trajectory are shown in a two-dimensional map of the calculated root-mean-square value and estimated Floquet multiplier when two signals of different modes are mixed. Without applying a digital filter or frequency decomposition, non-linear oscillation detection is possible by monitoring a non-linear oscillatory index based on the maximum Lyapunov exponent.

References

    1. 1)
      • 8. Ye, H., Liu, Y., Zhang, P., et al: ‘Analysis and detection of forced oscillation in power system’, IEEE Trans. Power Syst., 2016, 32, (2), pp. 11491160.
    2. 2)
      • 3. NERC Reliability guideline: ‘Integrating inverter based resources into weak power systems’, 2017.
    3. 3)
      • 5. Gao, B., Zhang, R., Li, R., et al: ‘Subsynchronous torsional interaction of wind farms with FSIG wind turbines connected to LCC-HVDC lines’, Energies, 2017, 10, (9), p. 1435.
    4. 4)
      • 4. Sun, D., Xie, X., Liu, Y., et al: ‘Investigation of SSTI between practical MMC based VSC HVDC and adjacent turbogenerators through modal signal injection test’, IEEE Trans. Power Deliv., 2016, 32, (6), pp. 24322441.
    5. 5)
      • 16. Sato, S., Sano, M., Sawada, Y.: ‘Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems’, Prog. Theor. Phys., 1987, 77, pp. 15.
    6. 6)
      • 22. IEEE sub-synchronous resonance working group: ‘Second benchmark model for computer simulation of sub-synchronous resonance’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (5), pp. 10571066.
    7. 7)
      • 17. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: ‘A practical method for calculating largest Lyapunov exponents from small data sets’, Phys. D, Nonlinear Phenom., 1993, 65, pp. 117134.
    8. 8)
      • 2. Cigre Working group B4.62: ‘Connection of wind farms to weak AC networks’, 2016.
    9. 9)
      • 15. Wolf, A., Swift, J.B., Swinney, H.L., et al: ‘Determining Lyapunov exponents from a time series’, Physica D, 1985, 16, pp. 285317.
    10. 10)
      • 19. Seydel, R.: ‘Practical bifurcation and stability analysis’ (Springer, New York, 2010).
    11. 11)
      • 10. Follum, J., Pierre, J.W.: ‘Detection of periodic forced oscillations in power systems’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 24232433.
    12. 12)
      • 7. Li, P., Wang, J., Xiong, L., et al: ‘Nonlinear controllers based on exact feedback linearization for series-compensated DFIG-based wind parks to mitigate sub-synchronous control interaction’, Energies, 2017, 10, (8), p. 1182.
    13. 13)
      • 14. Bonneville Power Administration (BPA): ‘From wide-area monitoring to wide-area control’, 2017.
    14. 14)
      • 6. Wang, L., Peng, J., You, Y., et al: ‘SSCI performance of DFIG with direct controller’, IET Gener. Trans. Distrib., 2017, 11, (10), pp. 26972702.
    15. 15)
      • 18. Dasgupta, S., Paramasivam, M., Vaidya, U., et al: ‘PMU-based model-free approach for short term voltage stability monitoring’. IEEE Power Energy, GM, San Diego, CA, USA, July 2012.
    16. 16)
      • 21. IEEE Power & Energy Society: ‘IEEE standard for synchrophasor measurements for power systems’ (IEEE Standards Association, New York, NY, USA).
    17. 17)
      • 13. Zhou, N., Ghorbaniparvar, M., Akhlaghi, S.: ‘Locating sources of forced oscillations using transfer functions’. IEEE Power and Energy Conf. at Illinois (PECI, 2017), IL, USA, February 2017.
    18. 18)
      • 24. Harb, A.M., Widyan, M.S.: ‘Modern nonlinear theory as applied to SSR of the IEEE second benchmark model’. 2003 IEEE Power Tech Conf. Proc., Bologna, Italy, June 2003.
    19. 19)
      • 12. Zhou, N.: ‘A cross-coherence method for detecting oscillations’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 623631.
    20. 20)
      • 9. Myers, R.B., Trudnowski, D.J.: ‘Effects of forced oscillations on spectral-based mode-shape estimation’. Proc. IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, July 2013, pp. 16.
    21. 21)
      • 1. Ruberg, S.: ‘MIGRATE – report on systemic issues’ (TENNET, 2016).
    22. 22)
      • 20. Kantz, H., Schreiber, T.: ‘Nonlinear time series analysis’ (Cambridge University Press, Cambridge, UK, 2004).
    23. 23)
      • 23. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    24. 24)
      • 11. Zhou, N., Dagle, J.: ‘Initial results in using a self-coherence method for detecting sustained oscillations’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 522530.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5414
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5414
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address