access icon free Proximity effect modelling for cables of finite length using the hybrid partial element equivalent circuit and artificial neural network method

This study presents an efficient method for modelling the proximity effect in complex conductor systems. This method is based on a discretisation partial element equivalent circuit (DPEEC) scheme in combination with artificial neural network (ANN). Circuit parameters of a conductor system are obtained with DPEEC at low frequency. ANN trained with the low-frequency parameters is employed to predict proximity effect at high frequencies. The proposed method significantly improves the calculation efficiency in both time and memory consuming. The method is validated by comparing with the result obtained by MoM-SO. Case studies of closely-spaced cables with different configurations are analysed. It is applied to evaluate the lightning current in typical cable installations. The comparison among different configurations reveals that the proximity effect leads to uneven current distribution in cables. Cable modelling without considering the proximity effect could lead to significant errors in transient current analysis.

Inspec keywords: power cables; equivalent circuits; power engineering computing; installation; current distribution; conductors (electric); neural nets

Other keywords: artificial neural network method; closely-spaced cables; lightning current evalation; proximity effect modelling; low-frequency parameters; MoM-SO; complex conductor systems; DPEEC scheme; uneven current distribution; discretisation partial element equivalent circuit scheme; ANN; typical cable installations; hybrid partial element equivalent circuit; finite length cables

Subjects: Electrical contracting and installation; Power engineering computing; Power cables; General circuit analysis and synthesis methods; Neural computing techniques

References

    1. 1)
      • 23. Jonguk, K., Hyun-Tai, K., Kwi-Soo, K., et al: ‘An equivalent circuit model for multi-port networks’. 2007 European Microwave Conf., Munich, Germany, October 2007, pp. 901904.
    2. 2)
      • 3. Martins, T. F. R. D., Lima, A. C. S., Carneiro, S.: ‘Effect of approximate impedance formulae on the accuracy of transmission line modelling’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 534539.
    3. 3)
      • 1. Kaloudas, C. G., Gouramanis, K. V., Stasinos, K., et al: ‘Methodology for the selection of long-medium-voltage power cable configurations’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 526536.
    4. 4)
      • 24. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    5. 5)
      • 16. Demuth, H. B., Beale, M. H., De Jess, O., et al: ‘Neural network design’ (Martin Hagan, 2014).
    6. 6)
      • 6. Gudmundsdottir, U. S.: ‘Proximity effect in fast transient simulations of an underground transmission cable’, Electr. Power Syst. Res., 2014, 115, pp. 5056.
    7. 7)
      • 9. Riba, J.-R.: ‘Analysis of formulas to calculate the AC resistance of different conductors’ configurations’, Electr. Power Syst. Res., 2015, 127, pp. 93100.
    8. 8)
      • 21. Paul, C. R.: ‘Inductance: loop and partial’ (Wiley, Hoboken, NJ, USA, 2011).
    9. 9)
      • 2. Chen, H., Qin, Z., Du, Y., et al: ‘TAES: a PEEC-based tool for transient simulation’. 2016 Asia-Pacific Int. Symp. on Electromagnetic Compatibility (APEMC), Shenzhen, China, May 2016, vol. 1, pp. 676678.
    10. 10)
      • 7. Costa, E. C. M., Kurokawa, S., Pissolato, J., et al: ‘Efficient procedure to evaluate electromagnetic transients on three-phase transmission lines’, IET Gener. Transm. Distrib., 2010, 4, (9), pp. 10691081.
    11. 11)
      • 11. Ametani, A., Kawamura, T.: ‘A method of a lightning surge analysis recommended in Japan using EMTP’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 867875.
    12. 12)
      • 15. Cios, K. J., Pedrycz, W., Swiniarski, R. W., et al: ‘Data mining: a knowledge discovery approach’ (Springer Science & Business Media, New York, NY, USA, 2007).
    13. 13)
      • 26. Antonini, G.: ‘SPICE equivalent circuits of frequency-domain responses’, IEEE Trans. Electromagn. Compat., 2003, 45, (3), pp. 502512.
    14. 14)
      • 22. Grover, F. W.: ‘Inductance calculations: working formulas and tables’ (Dover, New York, 1946).
    15. 15)
      • 10. Patel, U. R., Gustavsen, B., Triverio, P.: ‘An equivalent surface current approach for the computation of the series impedance of power cables with inclusion of skin and proximity effects’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 24742482.
    16. 16)
      • 25. Beerten, J., D'Arco, S., Suul, J. A.: ‘Frequency-dependent cable modelling for small-signal stability analysis of VSC-HVDC systems’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13701381.
    17. 17)
      • 13. Chen, H., Du, Y., Chen, M.: ‘Lightning current among closely-spaced cables’. 2014 Int. Conf. on Lightning Protection (ICLP), Shanghai, China, October 2014, pp. 412417.
    18. 18)
      • 18. Rayas-Sanchez, J. E.: ‘EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 420435.
    19. 19)
      • 8. Papadopoulos, T. A., Tsiamitros, D. A., Papagiannis, G. K.: ‘Earth return admittances and impedances of underground cables in non-homogeneous earth’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 161171.
    20. 20)
      • 12. Antonini, G., Cristina, S., Orlandi, A.: ‘PEEC modeling of lightning protection systems and coupling to coaxial cables’, IEEE Trans. Electromagn. Compat., 1998, 40, (4), pp. 481491.
    21. 21)
      • 4. Tzinevrakis, A. E., Mimos, E. I., Tsanakas, D. K.: ‘Electric field analytical formulas for single-circuit power lines with a horizontal arrangement of conductors’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 509520.
    22. 22)
      • 27. Lima, A. C., Gustavsen, B., Fernandes, A. B.: ‘Inaccuracies in network realization of rational models due to finite precision of RLC branches’. Int. conf. on Power Syst. Transients, IPST, Lyon, France, 2007, pp. 47.
    23. 23)
      • 28. IEC 62305-1: ‘Protection against lightning: part I general principles’, 2010.
    24. 24)
      • 20. Xu, L., Du, Y., Zhou, Q. B.: ‘The magnetic field and induced current arising from a cylindrical shell loop with an unbalanced current’, Electr. Power Syst. Res., 2004, 71, (1), pp. 2126.
    25. 25)
      • 5. Papadopoulos, T. A., Chrysochos, A. I., Papagiannis, G. K.: ‘Analytical study of the frequency-dependent earth conduction effects on underground power cables’, IET Gener. Transm. Distrib., 2013, 7, (3), pp. 276287.
    26. 26)
      • 19. Schelkunoff, S. A.: ‘The electromagnetic theory of coaxial transmission lines and cylindrical shields’, Bell Syst. Tech. J., 1934, 13, (4), pp. 532579.
    27. 27)
      • 17. Zhang, Q. J., Gupta, K. C., Devabhaktuni, V. K.: ‘Artificial neural networks for RF and microwave design-from theory to practice’, IEEE Trans. Microw. Theory Tech., 2003, 51, (4), pp. 13391350.
    28. 28)
      • 14. Chen, H., Du, Y., Chen, M.: ‘Lightning transient analysis of radio base stations’, IEEE Trans. Power Deliv., 2017, accepted, Doi: 10.1109/tpwrd.2017.2788039.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5392
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading